Классификация рецепторов. мономодальные и полимодальные рецепторы. ноцицепторы ( болевые рецепторы ). экстерорецепторы. интерорецепторы.

Рецептором называют специализированную клетку, эволюционно приспособленную к восприятию из внешней или внутренней среды определенного раздражителя и к преобразованию его энергии из физической или химической формы в форму нервного возбуждения.

КЛАССИФИКАЦИЯ РЕЦЕПТОРОВ

Классификация рецепторов. Мономодальные и полимодальные рецепторы. Ноцицепторы ( болевые рецепторы ). Экстерорецепторы. Интерорецепторы.Классификация рецепторов основывается, в первую очередь, на характере ощущений, возникающих у человека при их раздражении. Различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, терморецепторы, проприои вестибулорецепторы (рецепторы положения тела и его частей в пространстве). Обсуждается вопрос существования специальных рецепторов боли.

Рецепторы по месту расположения разделяют на внешние, или экстерорецепторы, и внутренние, или интерорецепторы.

К экстерорецепторам относятся слуховые, зрительные, обонятельные, вкусовые и осязательные рецепторы.

К интерорецепторам относятся вестибулорецепторы и проприорецепторы (рецепторы опорно-двигательного аппарата), а также интерорецепторы, сигнализирующие о состоянии внутренних органов.

По характеру контакта с внешней средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные – возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые и тактильные).

В зависимости от природы вида воспринимаемого раздражителя, на который они оптимально настроены, различают пять типов рецепторов.

  • Классификация рецепторов. Мономодальные и полимодальные рецепторы. Ноцицепторы ( болевые рецепторы ). Экстерорецепторы. Интерорецепторы.Механорецепторывозбуждаются при их механической деформации; расположены в коже, сосудах, внутренних органах, опорно-двигательном аппарате, слуховой и вестибулярной системах.
  • Хеморецепторывоспринимают химические изменения внешней и внутренней среды организма. К ним относятся вкусовые и обонятельные рецепторы, а также рецепторы, реагирующие на изменение состава крови, лимфы, межклеточной и цереброспинальной жидкости (изменение напряжения О2 и СО2, осмолярности и рН, уровня глюкозы и других веществ). Такие рецепторы есть в слизистой оболочке языка и носа, каротидном и аортальном тельцах, гипоталамусе и продолговатом мозге.
  • Терморецепторы реагируют на изменения температуры. Они подразделяются на тепловые и холодовые рецепторы и находятся в коже, слизистых оболочках, сосудах, внутренних органах, гипоталамусе, среднем, продолговатом и спинном мозге.
  • Фоторецепторыв сетчатке глаза воспринимают световую (электромагнитную) энергию.
  • Ноцицепторы, возбуждение которых сопровождается болевыми ощущениями (болевые рецепторы). Раздражителями этих рецепторов являются механические, термические и химические (ги-стамин, брадикинин, К+, Н+ и др.) факторы. Болевые стимулы воспринимаются свободными нервными окончаниями, которые имеются в коже, мышцах, внутренних органах, дентине, сосудах. С психофизиологической точки зрения рецепторы подразделяют в соответствии с органами чувств и формируемыми ощущениями на зрительные, слуховые, вкусовые, обонятельные и тактильные.

В зависимости от строения рецепторов их подразделяют на первичные, или первичночувствующие, которые являются специализированными окончаниями чувствительного нейрона, и вторичные, или вторичночувствующие, представляющие собой клетки эпителиального происхождения, способные к образованию рецепторного потенциала в ответ на действие адекватного стимула.

Первичночувствующие рецепторы могут сами генерировать потенциалы действия в ответ на раздражение адекватным стимулом, если величина их рецепторного потенциала достигнет пороговой величины.

К ним относятся обонятельные рецепторы, большинство механорецепторов кожи, терморецепторы, болевые рецепторы или ноцицепторы, проприоцепторы и большинство интерорецепторов внутренних органов. Тело нейрона расположено в спинно-мозговом ганглии или в ганглии черепных нервов.

В первичном рецепторе раздражитель действует непосредственно на окончания сенсорного нейрона. Первичные рецепторы являются филогенетически более древними структурами, к ним относятся обонятельные, тактильные, температурные, болевые рецепторы и проприорецепторы.

Вторичночувствующие рецепторы отвечают на действие раздражителя лишь возникновением рецепторного потенциала, от величины которого зависит количество выделяемого этими клетками медиатора.

С его помощью вторичные рецепторы действуют на нервные окончания чувствительных нейронов, генерирующих потенциалы действия в зависимости от количества медиатора, выделившегося из вторичночувствующих рецепторов.

Во вторичных рецепторах имеется специальная клетка, синаптически связанная с окончанием дендрита сенсорного нейрона. Это клетка, например фоторецептор, эпителиальной природы или нейроэктодермального происхождения.

Вторичные рецепторы представлены вкусовыми, слуховыми и вестибулярными рецепторами, а также хемочувствительными клетками синокаротидного клубочка. Фоторецепторы сетчатки, имеющие общее происхождение с нервными клетками, чаще относят к первичным рецепторам, но отсутствие у них способности генерировать потенциалы действия указывает на их сходство с вторичными рецепторами.

По скорости адаптации рецепторы делят на три группы: быстро адаптирующиеся (фазные), медленно адаптирующиеся (тонические) и смешанные(фазнотонические), адаптирующиеся со средней скоростью.

Примером быстро адаптирующихся рецепторов являются рецепторы вибрации (тельца Пачини) и прикосновения (тельца Мейснера) к коже. К медленно адаптирующимся рецепторам относятся проприорецепторы, рецепторы растяжения легких, болевые рецепторы.

Со средней скоростью адаптируются фоторецепторы сетчатки, терморецепторы кожи.

Большинство рецепторов возбуждаются в ответ на действие стимулов только одной физической природы и поэтому относятся к мономодальным.

Их можно возбудить и некоторыми неадекватными раздражителями, например фоторецепторы — сильным давлением на глазное яблоко, а вкусовые рецепторы — прикосновением языка к контактам гальванической батареи, но получить качественно различаемые ощущения в таких случаях невозможно.

Наряду с мономодальными существуют полимодальные рецепторы, адекватными стимулами которых могут служить раздражители разной природы. К такому типу рецепторов принадлежат некоторые болевые рецепторы, или ноцицепторы (лат.

nocens — вредный), которые можно возбудить механическими, термическими и химическими стимулами.

Полимодальность имеется у терморецепторов, реагирующих на повышение концентрации калия во внеклеточном пространстве так же, как на повышение температуры.

ОБЩИЕ МЕХАНИЗМЫ ВОЗБУЖДЕНИЯ РЕЦЕПТОРОВ

При действии стимула в рецепторе происходит преобразование энергии внешнего раздражения в рецепторный сигнал (трансдукция сигнала). Этот процесс включает в себя три основных этапа:

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы. Расчет стоимостиГарантииОтзывы

  • 1)       взаимодействие стимула с рецепторной белковой молекулой, которая находится в мембране рецептора;
  • 2)       усиление и передачу стимула в пределах рецепторной клетки
  • 3)       открывание находящихся в мембране рецептора ионных каналов, через которые начинает течь ионный ток, что, как правило, приводит к деполяризации клеточной мембраны рецепторной клетки (возникновению так называемого рецепторного потенциала).

Чувствительность рецепторных элементов к адекватным раздражителям, к восприятию которых они эволюционно приспособлены, предельно высока. Так, обонятельный рецептор может возбудиться при действии одиночной молекулы пахучего вещества, фоторецептор – при действии одиночного кванта света.

Механизм возбуждения рецепторов связан с изменением проницаемости клеточной мембраны для ионов калия и натрия. Когда раздражение достигает пороговой величины, возбуждается сенсорный нейрон, посылающий импульс в центральную нервную систему.

Можно сказать, что рецепторы кодируют поступающую информацию в виде электрических сигналов. Сенсорная клетка посылает информацию по принципу «всё или ничего» (есть сигнал / нет сигнала).

При действии стимула на рецепторную клетку в белково-липидном слое мембраны происходит изменение пространственной конфигурации белковых рецепторных молекул.

Это приводит к изменению проницаемости мембраны для определенных ионов, чаще всего для ионов натрия, но в последние годы открыта еще и роль калия в этом процессе. Возникают ионные токи, изменяется заряд мембраны и происходит генерация рецепторного потенциала (РП). А далее процесс возбуждения протекает в разных рецепторах по-разному.

В первично чувствующих рецепторах, которые являются свободными голыми окончаниями чувствительного нейрона (обонятельных, тактильных, проприоцептивных), РП воздействует на соседние, наиболее чувствительные участки мембраны, где генерируется потенциал действия (ПД), который далее в виде импульсов распространяется по нервному волокну. Таким образом, когда рецепторный потенциал достигает определенной величины, на его фоне возникает распространяющийся ПД. Преобразование энергии внешнего стимула в ПД в первичных рецепторах может происходить как непосредственно на мембране, так и при участии некоторых вспомогательных структур.

Рецепторный и распространяющийся потенциалы возникают в первичных рецепторах в одних и тех же элементах.

Так, в расположенных в коже окончаниях отростка сенсорного нейрона при действии раздражителя сначала формируется рецепторный потенциал, под влиянием которого в ближайшем перехвате Ранвье возникает распространяющийся потенциал.

Следовательно, в первичных рецепторах рецепторный потенциал является причиной возникновения — генерации — распространяющегося ПД, поэтому его называют еще генераторным

Так, например, происходит в тельце Пачини. Рецептор здесь представлен голым окончанием аксона, которое окружено соединительнотканной капсулой. При сдавливании тельца Пачини регистрируется РП, который далее преобразуется в импульсный ответ афферентного волокна.

Читайте также:  Аномальное отхождение левой коронарной артерии от легочной артерии - синдром Бланда—Уайта—Гарленда.

Во вторично чувствующих рецепторах, которые представлены специализированными клетками (зрительные, слуховые, вкусовые, вестибулярные), РП приводит к образованию и выделению медиатора из пресинаптического отдела рецепторной клетки в синаптическую щель рецепторно-афферентного синапса.

Этот медиатор воздействует на постсинаптическую мембрану чувствительного нейрона, вызывает ее деполяризацию и образование постсинаптического потенциала, который называют генераторным потенциалом (ГП). ГП, воздействуя на внесинаптические участки мембраны чувствительного нейрона, обусловливает генерацию ПД.

ГП может быть как де-, так и гиперполяризационным и соответственно вызывать возбуждение или тормозить импульсный ответ афферентного волокна.

Во вторичных рецепторах рецепторный и генераторный потенциалы не являются однозначными понятиями: рецепторный потенциал возникает в рецепторных образованиях, а генераторный—в конечных разветвлениях отростка сенсорного нейрона.

Наличие генераторных потенциалов было установлено для всех рецепторных образований. Это позволило сделать вывод о том, что пусковым механизмом для возникновения нервных импульсов является генераторный потенциал рецепторов.

Его амплитуда возрастает в логарифмической зависимости от интенсивности раздражена.

Классификация рецепторов. Мономодальные и полимодальные рецепторы. Ноцицепторы ( болевые рецепторы ). Экстерорецепторы. Интерорецепторы.

Спонтанная активность рецепторных образований и их реакции на раздражение. Для всех рецепторных образований характерна спонтанная, или самопроизвольная, активность. Она проявляется в генерации ПД без нанесения раздражений.

Спонтанная активность служит источником деятельного состояния ретикулярной формации и создает возможность проявлять реакции на раздражения в двух направлениях: возбуждения и торможения. При возбуждении активность усиливается, при торможении уменьшается.

Это обеспечивает известную гибкость системы, воспринимающей различные раздражения.

Торможение и адаптация. Для деятельности анализаторов характерно наличие торможения уже в периферическом его отделе.

Торможение обнаружено в рецепторных образованиях разных анализаторов и у разных представителей мира животных. Торможение в рецепторных образованиях органов чувств способствует периферическому анализу раздражений.

Так, в зрительном анализаторе оно обеспечивает контрастность изображения путем подчеркивания линий и контуров предметов.

Всем рецепторам свойственна адаптация к действующему раздражителю. Адаптацией называют снижение чувствительности анализатора к постоянно действующему раздражению.

Субъективно она проявляется в уменьшении интенсивного ощущения или в полном его исчезновении, а объективно — в уменьшении числа импульсов, идущих по афферентному нерву раздражаемого анализатора. Раздражитель, действующий постоянно, перестает раздражать.

Поэтому в помещении, где имеется какое-либо пахучее вещество, сначала очень сильно ощущение его запаха, а через некоторое время оно исчезает.

Биологическое значение адаптации заключается в том, что нейроны центральной нервной системы, быстро освобождаясь от одного вида деятельности, способны все время воспринимать новые раздражения, т. е. осуществлять реакцию на изменения, происходящие в окружающей среде.

Подпись: Схема зависимости различительной способности от перекрытия рецептив-ных полей. От пункта А возбуждение идет по двум афферентным волокнам, а от пунктов Б и В — по одному. Это способствует различению двух раздражений, наносимых . одновременно в точках А и Б одного рецептивного поля или А и В второго.

Рецептивное поле анализатора и чувствительность рецепторных образований. Для каждого анализатора характерно наличие цептивного поля. Им называют воспринимающий раздражения участок поверхности, в котором разветвляется афферентное нервное волокно одной нервной клетки. Площадь рецептивных участков различна не только для разных анализаторов, но широко варьирует в пределах каждого из них.

С величиной рецептивного поля связана чувствительность действующему раздражителю. Экспериментально было показано, что для возникновения возбуждения в нейроне недостаточно активности одного рецепторного элемента. При действии раздражителя происходит суммация эффектов раздражения в элементах данного рецептивного поля.

Причем установлено, что интенсивность раздражителя в известных пределах взаимозаменяема с площадью раздражаемого участка. Чем больше площадь суммации, тем менее интенсивным может быть раздражитель для вызова одного и того же эффекта. Таким образом, величиной рецептивного поля определяется интенсивность возникающей реакции и способность к восприятию слабых раздражений.

Способность различать две точки пространства как раздельные при увеличении рецептивного поля, наоборот, падает.

При большом рецептивном поле одновременно нанесение раздражения на две его точки, даже далеко расположенные, воспринимается как одно, ибо они адресуются к одной и той же нервной клетке.

Недостаточная различительная способность частично компенсируется взаимным перекрытием рецептивных полей.

Чувствительность рецепторных образований. Все рецепторные образования очень чувствительны к адекватным раздражениям, и нечувствительны к неадекватным.

Фгбну нцпз. ‹‹общая психиатрия››

Цитоархитектоника головного мозга человека организована таким образом, что более чем 10 млрд.

нервных клеток, занимая относительно небольшое пространство и будучи сформированными в специализированные структуры, обеспечивают специфические функции мозга, связанные с восприятием, переработкой и проведением информации, в соответствии с которой осуществляется взаимодействие организма с внешней средой на основе высокой нейрональной специфичности и пластичности.

Основной структурной единицей нервной системы является нейрон. Различные типы нейронов дифференцируются по величине и форме тела клетки, а также по длине и степени ветвистости ее отростков.

Клеточное тело по своим размерам варьирует очень широко — от 5 до 100 мкм в диаметре.

Оно содержит следующие органеллы: ядро, митохондрии, эндоплазматический ретикулум (гладкий и шероховатый), расположенные на цистернах эндоплазматического ретикулума и в свободном пространстве рибосомы и полисомы, комплекс Гольджи и различные внутриклеточные включения (гранулы гликогена, липидные капли, скопления частиц пигмента в особых нейронах и др.), везикулы, а также лизосомы.

Группы параллельно расположенных цистерн шероховатого эндоплазматического ретикулума в виде ограниченных мембраной удлиненных цистерн с прикрепленными к ним рибосомами образуют субстанцию (тельца) Ниссля (тигроидное вещество). В цитоплазме имеются также нейрофиламенты и нейротрубочки (рис. 3).

Все перечисленные ультраструктурные органеллы клетки несут определенные функции. Ядро является субстратом основных генетических процессов в клетке. Митохондрии обеспечивают энергетический обмен — в них происходит окислительное фосфорилирование, приводящее к продукции энергии в виде молекул АТФ.

Эндоплазматический ретикулум с прикрепленными на его цистернах рибосомами, а также свободно расположенные рибосомы и их комплексы (полисомы) имеют отношение к белковому обмену и синтетическим процессам в клетке. Лизосомам приписывается обменно-выделительная роль.

Нейротрубочки и нейрофиламенты обеспечивают транспорт внутриклеточных веществ, имеющих отношение к проведению нервного импульса. Долгое время считали, что комплекс Гольджи, состоящий из параллельно расположенных цистерн и скоплений пузырьков на их концах, выполняет неопределенные обменно-выделительные функции.

Хотя об этом комплексе известно далеко не все, привлекают к себе накопленные многими исследователями данные, свидетельствующие о том, что он играет главную роль в процессах обновления клеточной мембраны и ее генетически обусловленной специализации.

Известно, что в комплексе Гольджи может происходить первичная сборка специализированных участков мембраны (рецепторов), которые в виде пузырьков транспортируются к наружной клеточной оболочке и встраиваются в нее. Такие исследования были обобщены А.А.Милохиным (1983).

От тела нейрона отходят основной отросток — аксон и многочисленные ветвящиеся отростки — дендриты. Длина аксонов различных нейронов колеблется от 1 мм до почти 1 м (нервное волокно).

Вблизи окончания аксон разделяется на терминали, на которых расположены синапсы, контактирующие с телом и дендритами других нейронов.

Синапсы вместе с нейрофиламентами и нейротрубочками являются субстратом проведения нервного импульса.

Рис. 3. Основные ультраструктурные компоненты нейрона.

Л — лизосомы; ШЭР — шероховатый эндоплазматический ретикулум (цистерны с прикрепленными рибосомами); М — митохондрии; НФ — нейрофиламенты; НТ — нейротрубочки; P — рибосомы; П — полисомы (комплексы рибосом); КГ — комплекс Гольджи; Я — ядро; ЦЭР — цистерны эндоплазматического ретикулума; ЛГ — липидные гранулы; ЛФ — липофусцин.

Кроме нейронов, в ткани мозга имеются различные виды глиальных клеток — астроглия, олигодендроглия, микроглия. Астроглия играет большую роль в обеспечении функции нейрона и формировании реакции мозговой ткани на вредоносные воздействия (инфекция, интоксикация и др.) — принимает участие в воспалительных процессах и ликвидации их последствий (заместительный глиоз).

Олигодендроглия, как известно, обеспечивает миелинизацию нервного волокна и регулирует водный обмен (дренажная глия). Функции микроглии не до конца изучены, но ее значение подчеркивается размножением этих клеток при некоторых специфических процессах (участие в формировании сенильных бляшек; существует предположение о выработке микроглиальными клетками амилоидных фибрилл и т.

п.).

Читайте также:  Гевискон - инструкция по применению, аналоги, отзывы и формы выпуска (суспензия форте в пакетиках или сироп, гель, таблетки 250 мг) препарата для лечения изжоги и повышенной кислотности желудочного сока у взрослых, детей и при беременности

Особые клеточные структуры характерны для желудочковых поверхностей головного мозга и его сосудистого сплетения.

Желудочковая поверхность мозга покрыта клетками эпендимы с многочисленными микроворсинками и ресничками, принимающими участие в ликворообращении; сосудистое сплетение представлено «гроздьями» ворсинок, состоящих из капилляров, покрытых эпителиальными клетками. Их основная функция связана с обменом веществ между кровью и цереброспинальной жидкостью.

Типичный синапс состоит из пресинаптической терминали, постсинаптической области и расположенной между ними синаптической щели. Пресинаптическая терминаль является окончанием аксона. Она содержит нейрофиламенты, нейротрубочки, митохондрии и синаптические пузырьки, скопления которых видны около пресинаптической мембраны.

Через последнюю переносятся содержащиеся в пузырьках нейротрансмиттеры. Постсинапс характеризуется наличием постсинаптического утолщения. Постсинаптическое утолщение представлено мембраной клетки с расположенными на ней рецепторами, входящими в структуру самой мембраны. Синапс представлен на рис.

4, а его электронно-микроскопическая картина на рис. 5.

Синапс может быть расположен на теле (соме) клетки — аксосоматический синапс, на дендрите — аксодендритный, на шипике дендрита — аксошипиковый (рис. 6) и на аксоне другой клетки — аксо-аксональный. Аксошипиковые синапсы несколько отличаются по своему строению от типичного синапса, что определяется строением шипика, имеющего в составе постсинапса особый шипиковый аппарат.

Взаимодействие пресинапса и постсинапса обеспечивается благодаря переносу нейротрансмиттера через синаптическую щель.

Выделяясь из пресинапса, нейротрансмиттер (медиатор) может связываться с рецептором постсинаптической мембраны, инактивироваться в синаптической щели и частично вновь захватываться пресинаптической мембраной (процесс обратного захвата — reuptake).

Если рецептор постсинаптической мембраны заблокирован, то возможны оба последних процесса, а также избыточное накопление медиатора и связанное с этим развитие гиперчувствительности рецепторов (см. рис. 4).

Более подробно эти процессы рассматриваются в разделе «Нейрохимические системы мозга».

Рецепторы нейронов — это белковые структуры, расположенные на внешней поверхности мембраны клеток.

Они способны «распознавать» и связывать биологически активные вещества — нейротрансмиттеры, различные эндогенные вещества, а также экзогенные соединения, в том числе психофармакологические средства.

Соединения, которые могут связывать рецепторы, называются лигандами. Лиганды бывают эндогенными и экзогенными.

Распознавание лиганда рецептором обеспечивается специальными структурными элементами, или сайтами. Специфичность связывания лиганда происходит благодаря структурному соответствию молекул лиганда и рецептора, когда они подходят друг к другу по типу «ключ к замку».

Реакция связывания является моментом запуска каскада внутриклеточных реакций, приводящих к изменению функционального состояния нейрона.

В зависимости от «силы» и «прочности» связывания лиганда с рецептором употребляют понятие аффинности (сродства) лиганда по отношению к рецептору.

При связывании рецептора с лигандом может происходить как активация, так и блокада рецептора. В связи с этим говорят об агонистах и антагонистах рецепторов, а также о частичных агонистах (рис. 7).

Максимальную эффективность в отношении активации рецептора имеет полный агонист, минимальную (практически нулевую) — антагонист. Между ними находятся вещества, называемые частичными агонистами. Последние действуют значительно мягче, чем полные агонисты.

Частичные агонисты, кроме того, занимая определенное пространственное положение в молекуле рецептора, могут предотвращать избыточное действие полного агониста, т.е. действуют частично как антагонисты. В этом случае употребляют понятие агонист/антагонист.

Высокой аффинностью могут обладать как агонисты, так и антагонисты рецептора.

Агонист активирует рецептор, вызывая соответствующий физиологический эффект, в то время как антагонист, связываясь с рецептором, блокирует его и предотвращает развитие физиологического эффекта, выявляемого агонистами. Примером антагонистов могут служить нейролептики, которые предотвращают эффекты дофамина на уровне дофаминового рецептора.

При связывании лиганда с рецептором происходит изменение конфигурации последнего (рис. 7).

Многие вещества, как эндогенные, так и экзогенные, реагируют не с одним, а с несколькими типами рецепторов — «семейством» их, которое подразделяется на отдельные типы.

Примером могут служить многие нейротрансмиттеры, реагирующие с несколькими типами специфических рецепторов (например, Д1—Д5-типы дофаминовых рецепторов).

Существование нескольких рецепторов к одному лиганду носит название гетерогенности рецепторов.

Представление о функции рецепторов было бы неполным, если не представить внутриклеточные процессы, развивающиеся после связывания рецептора соответствующим веществом, и механизмы, обеспечивающие трансформацию внешнего сигнала в процессы, приводящие к появлению нервного импульса.

Связывание лиганда с рецептором может приводить либо непосредственно к открытию (или закрытию) соответствующих ионных каналов (см. рис. 7), либо к активации вторичных мессенджерных систем (в качестве первичного мессенджера рассматривается вещество, реагирующее с рецептором).

Первые упоминания о вторичных мессенджерных системах появились в связи с работами E.Sutherland и соавт.

(1950), которые показали, что адреналин стимулирует гликогенез путем увеличения концентрации циклического аденозинмонофосфата (цАМФ) в клетке. Оказалось, что этот вторичный мессенджер опосредует и другие клеточные реакции.

В дальнейшем была выявлена связь действия цАМФ с активацией белковых киназ — ферментов, фосфорилирующих белки, что приводит к изменению их структуры и активности.

Позднее были открыты и другие вторичные мессенджеры.

Сейчас выделяют среди них 3 класса: 1) циклические нуклеотиды (цАМФ, циклический гуанозинмонофосфат — цГМФ); 2) ионы кальция (Са2+); 3) метаболиты фосфолипидов — инозитол-1,4,5-трифосфат (1Р3), диглицерин (ДАГ), арахидоновую кислоту. В отличие от других вторичных мессенджеров Са2+ транспортируется в нейрон из внутриклеточного пространства.

Мембраны нейрона содержат специализированные трансмембранные белки, которые формируют ионные каналы не только для Са2+, но и для других ионов, концентрация которых по обе стороны мембраны влияет на изменение мембранного потенциала. Происходят поляризация и деполяризация мембраны, т.е. изменение трансмембранного потенциала. Наибольшее значение в этих процессах имеют ионные каналы для натрия (Na+), калия (К+), хлора (С1-) и кальция (Са2+).

Рецептор — это… Что такое Рецептор?

Реце́птор — сложное образование, состоящее из терминалей (нервных окончаний) дендритов чувствительных нейронов, глии, специализированных образований межклеточного вещества и специализированных клеток других тканей, которые в комплексе обеспечивают превращение влияния факторов внешней или внутренней среды (раздражитель) в нервный импульс. В некоторых рецепторах (например, вкусовых и слуховых рецепторах человека) раздражитель непосредственно воспринимается специализированными клетками эпителиального происхождения или видоизмененными нервными клетками (чувствительные элементы сетчатки), которые не генерируют нервных импульсов, а действуют на иннервирующие их нервные окончания, изменяя секрецию медиатора. В других случаях единственным клеточным элементом рецепторного комплекса является само нервное окончание, часто связанное со специальными структурами межклеточного вещества (например, тельце Пачини).

Принцип работы рецепторов

Стимулами для разных рецепторов могут служить свет, механическая деформация, химические вещества, изменения температуры, а также изменения электрического и магнитного поля.

В рецепторных клетках (будь то непростредственно нервные окончания или специализированные клетки) соответствующий сигнал изменяет конформацию чувствительных молекул-клеточных рецепторов, что приводит к изменению активности мембранных ионных рецепторов и изменению мембранного потенциала клетки.

Если воспринимающей клеткой является непосредственно нервное окончание (так называемые первичные рецепторы), то обычно происходит деполяризация мембраны с последующей генерацией нервного импульса. Специализированные рецепторные клетки вторичных рецепторов могут как де-, так и гиперполяризоваться.

В последнем случае изменение мембранного потенциала ведет к уменьшению секреции тормозного медиатора, действующего на нервное окончание и, в конечном счете, все равно к генерации нервного импульса. Такой механизм реализован, в частности, в чувствительных элементах сетчатки.

В качестве клеточных рецепторных молекул могут выступать либо механо-, термо- и хемочувствительные ионные каналы, либо специализированные G-белки (как в клетках сетчатки).

Читайте также:  Видео ролик по методике силовой гимнастики норбекова. посмотреть видео методике силовой гимнастики норбекова.

В первом случае открытие каналов непосредственно изменяет мембранный потенциал (механочувствительные каналы в тельцах Пачини), во втором случае запускается каскад внутриклеточных реакций трансдукции сигнала, что ведет в конечном счете к открытию каналов и изменению потенциала на мембране.

Виды рецепторов

Существуют несколько классификаций рецепторов:

    • Экстерорецепторы (экстероцепторы) — расположены на поверхности или вблизи поверхности тела и воспринимают внешние стимулы (сигналы из окружающей среды)
    • Интерорецепторы (интероцепторы) — расположены во внутренних органах и воспринимают внутренние стимулы (например, информацию о состоянии внутренней среды организма)
      • Проприорецепторы (проприоцепторы) — рецепторы опорно-двигательного аппарата, позволяющие определить, например, напряжение и степень растяжения мышц и сухожилий. Являются разновидностью интерорецепторов.
  • По способности воспринимать разные стимулы
    • Мономодальные — реагирующие только на один тип раздражителей (например, фоторецепторы — на свет)
    • Полимодальные — реагирующие на несколько типов раздражителей (например. многие болевые рецепторы, а также некоторые рецепторы беспозвоночных, реагирующие одновременно на механические и химические стимулы).
  • По адекватному раздражителю
    • Хеморецепторы — воспринимают воздействие растворенных или летучих химических веществ.
    • Осморецепторы — воспринимают изменения осмотической концентрации жидкости (как правило, внутренней среды).
    • Механорецепторы — воспринимают механические стимулы (прикосновение, давление, растяжение, колебания воды или воздуха и т. п.)
    • Фоторецепторы — воспринимают видимый и ультрафиолетовый свет
    • Терморецепторы — воспринимают понижение (холодовые) или повышение (тепловые) температуры
    • Болевые рецепторы, стимуляция которых приводит к возникновению боли. Такого физического стимула, как боль, не существует, поэтому выделение их в отдельную группу по природе раздражителя в некоторой степени условно. В действительности, они представляют собой высокопороговые сенсоры различных (химических, термических или механических) повреждающих факторов. Однако уникальная особенность ноцицепторов, которя не позволяет отнести их, например, к «высокопороговым терморецепторам», состоит в том, что многие из них полимодальны: одно и то же нервное окончание способно возбуждаться в ответ на несколько различных повреждающих стимулов [1].
    • Электрорецепторы — воспринимают изменения электрического поля
    • Магнитные рецепторы — воспринимают изменения магнитного поля

У человека имеются первые шесть типов рецепторов. На хеморецепции основаны вкус и обоняние, на механорецепции — осязание, слух и равновесие, а также ощущения положения тела в пространстве, на фоторецепции — зрение. Терморецепторы есть в коже и некоторых внутренних органах.

Большая часть интерорецепторов запускает непроизвольные, и в большинстве случаев неосознаваемые, вегетативные рефлексы.

Так, осморецепторы включены в регуляцию деятельности почек, хеморецепторы, восппринимающие pH, концентрации углекислого газа и кислорода в крови, включены в регуляцию дыхания и т.д.

Иногда предлагается выделять группу электромагнитных рецепторов, в которую включают фото-, электро- и магниторецепторы. Магниторецепторы точно не идентифицированы ни у одной группы животных, хотя предположительно ими служат некоторые клетки сетчатки птиц, а возможно, и ряд других клеток[2].

В таблице приведены данные о некоторых типах рецепторов

Природа раздражителя Тип рецептора Место расположения и комментарии
• электрическое поле • ампула Лоренцини en:Ampullae of Lorenzini и другие типы • Имеются у рыб, круглоротых, амфибий, а также у утконоса и ехидны
• химическое вещество • хеморецептор
• влажность • гигрорецептор • Относятся к осморецепторам или механорецепторам. Располагаются на антеннах и ротовых органах многих насекомых
• механическое воздействие • механорецептор • У человека имеются в коже (экстероцепторы) и внутренних органах (барорецепторы, проприоцепторы)
• давление • барорецептор • Относятся к механорецепторам
• положение тела • проприоцептор • Относятся к механорецепторам. У человека это нервно-мышечные веретена, сухожильные органы Гольджи и др.
• осмотическое давление • осморецептор • В основном интерорецепторы; у человека имеются в гипоталамусе, а также, вероятно, в почках, стенках желудочно-кишечного тракта, возможно, в печени. Существуют данные о широком распространении осморецепторов во всех тканях организма
• свет • фоторецептор
• температура • терморецептор • Реагируют на изменение температуры. У человека имеются в коже и в гипоталамусе
• повреждение тканей •ноцицептор • В большинстве тканей с разной частотой. Болевые рецепторы — свободные нервные окончания немиелинизированных волокон типа C или слабо миелинизированных волокон типа Aδ.
• магнитное поле • магнитные рецепторы • Точное расположение и строение неизвестны, наличие у многих групп животных доказано поведенческими экспериментами

Рецепторы человека

Рецепторы кожи

  • Болевые рецепторы.
  • Тельца Пачини — капсулированные рецепторы давления в округлой многослойной капсуле. Располагаются в подкожно-жировой клетчатке. Являются быстроадаптирующимися (реагируют только в момент начала воздействия), то есть регистрируют силу давления. Обладают большими рецептивными полями, то есть представляют грубую чувствительность.
  • Тельца Мейснера — рецепторы давления, расположенные в дерме. Представляют собой слоистую структуру с нервным окончанием, проходящим между слоями. Являются быстроадаптирующимися. Обладают малыми рецептивными полями, то есть представляют тонкую чувствительность.
  • Тельца Меркеля — некапсулированные рецепторы давления. Являются медленноадаптирующимися (реагируют на всей продолжительности воздействия), то есть регистрируют продолжительность давления. Обладают малыми рецептивными полями.
  • Рецепторы волосяных луковиц — реагируют на отклонение волоса.
  • Окончания Руффини — рецепторы растяжения. Являются медленноадаптирующимися, обладают большими рецептивными полями.
  • Колба Краузе — рецептор, реагирующий на холод.

Рецепторы мышц и сухожилий

  • Мышечные веретена — рецепторы растяжения мышц, бывают двух типов:
    • с ядерной сумкой
    • с ядерной цепочкой
  • Сухожильный орган Гольджи — рецепторы сокращения мышц. При сокращении мышцы сухожилие растягивается и его волокна пережимают рецепторное окончание, активируя его.

Рецепторы связок

В основном представляют собой свободные нервные окончания (Типы 1, 3 и 4), меньшая группа — инкапсулированные (Тип 2). Тип 1 аналогичен окончаниям Руффини, Тип 2 — тельцам Паччини.

Рецепторы сетчатки глаза

Сетчатка содержит палочковые (палочки) и колбочковые (колбочки) фоточувствительные клетки, которые содержат светочувствительные пигменты. Палочки чувствительны к очень слабому свету, это длинные и тонкие клетки, сориентированные по оси прохождения света.

Все палочки содержат один и тот же светочувствительный пигмент.

Колбочки требуют намного более яркого освещения, это короткие конусообразные клетки, у человека колбочки делятся на три вида, каждый из которых содержит свой светочувствительный пигмент — это и есть основа цветового зрения.

Под воздействием света в рецепторах происходит выцветание — молекула зрительного пигмента поглощает фотон и превращается в другое соединение, хуже поглощающее свет волн (этой длины волны). Практически у всех животных (от насекомых до человека) этот пигмент состоит из белка, к которому присоединена небольшая молекула, близкая к витамину A.

Эта молекула и представляет собой химически трансформируемую светом часть.

Белковая часть выцветшей молекулы зрительного пигмента активирует молекулы трансдуцина, каждая из которых деактивирует сотни молекул циклического гуанозинмонофосфата, участвующих в открытии пор мембраны для ионов натрия, в результате чего поток ионов прекращается — мембрана гиперполяризуется.

Чувствительность палочек такова, что адаптировавшийся к полной темноте человек способен увидеть вспышку света такую слабую, что ни один рецептор не может получить больше одного фотона. При этом палочки не способны реагировать на изменения освещённости, когда свет настолько ярок, что все натриевые каналы уже закрыты.

См. также

  • Рецептивное поле
  • Сенсорная система

Примечания

  1. David Julius and Allan Basbaum. Molecular mechanisms of nociception. Nature 413, 203—210 (13 September 2001)
  2. Q&A: Animal behaviour: Magnetic-field perception. Kenneth J. Lohmann. Nature, Vol. 464, No. 7292. (22 April 2010)
  • Дэвид Хьюбел — «Глаз, мозг, зрение» перевод с англ. канд. биол. наук О. В. Левашова, канд. биол. наук Г. А. Шараева под ред. чл.-корр. АН СССР А. Л. Бызова, Москва «Мир», 1990
Ссылка на основную публикацию
Adblock
detector