Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

Сахарным диабетом в России страдает более 5 миллионов человек. Каждый год эта цифра увеличивается почти на 5 процентов. Многим пациентам необходимы инъекции инсулина. Причем каждый день. Чтобы обеспечить лекарством всех – нужно 800 000 литров в год!

Все начинается с бактерии

Производство в городе Пушкин можно сравнить с огромной «поджелудочной железой». Именно этот орган вырабатывает инсулин – «проводник» сахара в организме. При диабете инсулина не хватает, глюкоза скапливается в крови, клетки остаются «голодными».

Процесс искусственного получения лекарства начинается в лаборатории. Тут заготавливают главный ингредиент – кишечную палочку. В каждую бактерию встраивают ДНК, необходимую для синтеза инсулина. Ювелирную работу делают с помощью электрического напряжения.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

«Мы берем кишечную палочку, в которой нет необходимых нам ДНК, и помещаем в ту же самую среду ДНК. Создаем электрическое напряжение. Под действием напряжения ДНК начинает очень быстро двигаться, и как бы протыкает кишечную палочку. В какой-то палочке оказывается больше ДНК, в какой-то меньше», – рассказывает директор научно-исследовательского центра Роман Драй.

Колонии бактерий, которые впоследствии «научились» производить белок, отправляют дальше на размножение.

Корм для одноклеточных

Для размножения бактерий нужна питательная среда. Ее производят в двух баках, их на предприятии называют «кухней». Рацион у одноклеточных сбалансированный, от этого зависит качество будущего продукта. На приготовление уходит не больше 12 часов.

«Питательная среда у нас растительная. Была подобрана нашей компанией. Мы сами разработали ее. Это в основном микроэлементы и макроэлементы. И также экстракты растительные», – поясняет начальник цеха производства инсулина Сергей Сальников.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

В цехах почти все процессы автоматизированы. Люди здесь лишь следят за показаниями приборов. Смена – несколько человек. Большинство производственных помещений – за стеклом. Так поддерживается идеальная чистота.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

Питаются и размножаются одноклеточные в реакторах объемом до 2-х тонн. Сосчитать количество бактерий – невозможно. Только в одном миллилитре жидкости их несколько миллиардов.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

Коктейль из палочек

Чтобы сконцентрировать получившуюся массу, ее прогоняют через сепаратор. Объем уменьшается до 500-600 литров.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

Дальше смесь отправляют в гомогенизатор. Этот прибор разрушает палочки. Дело в том, что инсулин скапливается внутри них в небольших частицах – тельцах включениях.

Чтобы достать белок, нужно сломать клеточную стенку. В гомогенизаторе для этого сначала повышают давление до 1000 атмосфер. Потом резко сбрасывают. Бактерии не выдерживают перепадов и рвутся.

Тельца включения смешиваются с остатками клеток.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

Молекулярная точность

Разделить получившуюся «кашу» на ингредиенты помогает центрифуга.

«Под действием гравитации происходит осаждение. Все, что более тяжелое, оно осаждается, все, что более легкое – оно поднимается вверх. Соответственно мы понимаем, что тельца включения более тяжелые, они осаждаются. Поэтому мы будем использовать осадок, для дальнейшей работы с инсулином», – утверждает директор научно-исследовательского центра Роман Драй.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

Однако изначально белок в палочках сворачивается неправильно. Чтобы исправить это, тельца включения направляют в ренатурационную бочку. Там под действием ферментов гормон принимает нужную форму.

«Что происходит с белком, когда мы его варим? Он сворачивается! В принципе, в лабораторных условиях его можно развернуть и превратить обратно в жидкость. Как раз этим мы и занимаемся», – поясняет начальник цеха производства инсулина Сергей Сальников.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

После массу еще раз концентрируют. Но это пока не инсулин. На белках остаются лишние элементы – C-пептиды. Их отрезают в реакторе, также под действием ферментов.

Фильтрация

Последний рывок – очистка. Жидкость с инсулином помещают в хроматограф. Там избавляются от лишних примесей и собирают белки вместе.

«Инсулин заряжен, и мы берем другой заряд, и они притягиваются друг к другу. Все, что не притягивается – сходит. Мы это выливаем, ну, условно говоря, утилизируем», – утверждает директор научно-исследовательского центра Роман Драй.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

На выходе получается 99% инсулин. Дальше его кристаллизуют, сушат и превращают в порошок. Три тонны жидкости за 12 дней превращаются в пять килограммов концентрата. Этого хватит, чтобы обеспечить инъекциями сотни тысяч человек.

Финальная стадия

Дальше порошок отправляют на завод в подмосковный Оболенск. Там его растворяют и разливают по емкостям. Инсулином наполняют флаконы, картриджи, шприц-ручки.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

Потом – обязательный этап карантина. С каждой партии берут пробы на соответствие нормам качества. Только после этого наклеивают этикетки. Здесь должны быть уверены в каждой ампуле, ведь от продукции зависят жизни людей.

Сегодня завод изготавливает треть всего инсулина в России. Через несколько лет производство сможет обеспечить лекарством всю страну. Продукцию этого предприятия уже сейчас поставляют в страны СНГ, а вскоре первые партии отправят в Венесуэлу.

Биосинтез белка в клетке: процессы, этапы и последовательность синтеза клеточных белков

В клетках непрерывно идут процессы обмена веществ — процессы синтеза и распада веществ. Каж­дая клет­ка син­те­зи­ру­ет необ­хо­ди­мые ей ве­ще­ства. Этот про­цесс на­зы­ва­ет­ся био­син­те­зом. 

Био­син­тез — это про­цесс со­зда­ния слож­ных ор­га­ни­че­ских ве­ществ в ходе био­хи­ми­че­ских ре­ак­ций, про­те­ка­ю­щих с по­мо­щью фер­мен­тов. Биосинтез необходим для выживания — без него клетка умрёт. 

Одним из важнейших процессов биосинтеза в клетке является процесс биосинтеза белков, который включает в себя особые реакции, встречающиеся только в живой клетке — это реакции матричного синтеза. Матричный синтез — это синтез новых молекул в соответствии с планом, заложенным в других уже существующих молекулах. 

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

Синтез белка в клетке протекает при участии специальных органелл — рибосом. Это немембранные органеллы, состоящие из рРНК и рибосомальных белков.

Последовательность аминокислот в каждом белке определяется последовательностью нуклеотидов в гене — участке ДНК, кодирующем именно этот белок. Соответствие между последовательностью аминокислот в белке и последовательностью нуклеотидов в кодирующих его ДНК и иРНК определяется универсальным правилом — генетическим кодом.

Информация о белке может быть записана в нуклеиновой кислоте только одним способом — в виде последовательности нуклеотидов. ДНК построена из 4 видов нуклеотидов: аденина (А), тимина (Т), гуанина (Г), цитозина (Ц), а белки — из 20 видов аминокислот.

Таким образом, возникает проблема перевода четырёхбуквенной записи информации в ДНК в двадцатибуквенную запись белков. Генетический код — соотношения нуклеотидных последовательностей и аминокислот, на основе которых осуществляется такой перевод.

 

Процесс синтеза белка в клетке можно разделить на два этапа: транскрипция и трансляция. 

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.Этапы синтеза белка в клетке‍

Транскрипция — первый этап биосинтеза белка

Транскрипция — это процесс синтеза молекулы иРНК на участке молекулы ДНК

Транскрипция (с лат. transcription — переписывание) происходит в ядре клетки с участием ферментов, основную работу из которых осуществляет транскриптаза. В этом процессе матрицей является молекула ДНК.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

Спе­ци­аль­ный фер­мент на­хо­дит ген и рас­кру­чи­ва­ет уча­сток двой­ной спи­ра­ли ДНК. Фер­мент пе­ре­ме­ща­ет­ся вдоль цепи ДНК и стро­ит цепь ин­фор­ма­ци­он­ной РНК в со­от­вет­ствии с прин­ци­пом ком­пле­мен­тар­но­сти. По мере дви­же­ния фер­мен­та рас­ту­щая цепь РНК мат­ри­цы от­хо­дит от мо­ле­ку­лы, а двой­ная цепь ДНК вос­ста­нав­ли­ва­ет­ся.

Когда фер­мент до­сти­га­ет конца ко­пи­ро­ва­ния участ­ка, то есть до­хо­дит до участ­ка, на­зы­ва­е­мо­го стоп-ко­до­ном, мо­ле­ку­ла РНК от­де­ля­ет­ся от мат­ри­цы, то есть от мо­ле­ку­лы ДНК. Таким об­ра­зом, тран­скрип­ция — это пер­вый этап био­син­те­за белка.

На этом этапе про­ис­хо­дит счи­ты­ва­ние ин­фор­ма­ции путём син­те­за ин­фор­ма­ци­он­ной РНК.

Копировать информацию, хотя она уже содержится в молекуле ДНК, необходимо по следующим причинам: синтез белка происходит в цитоплазме, а молекула ДНК слишком большая и не может пройти через ядерные поры в цитоплазму. А маленькая копия её участка — иРНК — может транспортироваться в цитоплазму.

После транскрипции громоздкая молекула ДНК остаётся в ядре, а молекула иРНК подвергается «созреванию» — происходит процессинг иРНК. На её 5’ конец подвешивается КЭП для защиты этого конца иРНК от РНКаз — ферментов, разрушающих молекулы РНК.

На 3’ конце достраивается поли(А)-хвост, который также служит для защиты молекулы. После этого проходит сплайсинг — вырезание интронов (некодирующих участков) и сшивание экзонов (информационных участков).

После процессинга подготовленная молекула транспортируется из ядра в цитоплазму через ядерные поры.

Транскрипция пошагово:

  1. РНК полимераза садится на 3’ конец транскрибируемой цепи ДНК.
  2. Начинается элонгация — полимераза «скользит» по ДНК в сторону 5’ конца и строит цепь иРНК, комплементарную ДНК.
  3. Полимераза доходит до конца гена, «слетает» с ДНК и отпускает иРНК.
  4. После этого происходит процесс созревания РНК — процессинг.
Читайте также:  Румалон - инструкция по применению, аналоги, отзывы и формы выпуска (уколы в ампулах для внутримышечных инъекций 1 мл и 2 мл) лекарственного препарата для лечения артроза и спондилеза у взрослых, детей и при беременности

Проверьте себя: помните ли вы принцип комплементарности? Молекула ДНК состоит из двух спирально закрученных цепей. Цепи в молекуле ДНК противоположно направлены. Остов цепей ДНК образован сахарофосфатными остатками, а азотистые основания одной цепи располагаются в строго определённом порядке напротив азотистых оснований другой — это и есть правило комплементарности

Трансляция — второй этап биосинтеза белка

Трансляция — это перевод информации с языка нуклеотидов на язык аминокислот. 

Что же происходит в клетке? Трансляция представляет собой непосредственно процесс построения белковой молекулы из аминокислот. Трансляция происходит в цитоплазме клетки. В трансляции участвуют рибосомы, ферменты и три вида РНК: иРНК, тРНК и рРНК. Глав­ным по­став­щи­ком энер­гии при трансляции слу­жит мо­ле­ку­ла АТФ — аде­но­з­ин­три­фос­фор­ная кис­ло­та. 

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

Во время транс­ля­ции нук­лео­тид­ные по­сле­до­ва­тель­но­сти ин­фор­ма­ци­он­ной РНК пе­ре­во­дят­ся в по­сле­до­ва­тель­ность ами­но­кис­лот в мо­ле­ку­ле по­ли­пеп­тид­ной цепи. Этот про­цесс идёт в ци­то­плаз­ме на ри­бо­со­мах.

Об­ра­зо­вав­ши­е­ся ин­фор­ма­ци­он­ные РНК вы­хо­дят из ядра через поры и от­прав­ля­ют­ся к ри­бо­со­мам. Ри­бо­со­мы — уни­каль­ный сбо­роч­ный ап­па­рат. Ри­бо­со­ма сколь­зит по иРНК и вы­стра­и­ва­ет из опре­де­лён­ных ами­но­кис­лот длин­ную по­ли­мер­ную цепь белка.

Ами­но­кис­ло­ты до­став­ля­ют­ся к ри­бо­со­мам с по­мо­щью транс­порт­ных РНК. Для каж­дой ами­но­кис­ло­ты тре­бу­ет­ся своя транс­порт­ная РНК, ко­то­рая имеет форму три­лист­ни­ка.

У неё есть уча­сток, к ко­то­рому при­со­еди­ня­ет­ся ами­но­кис­ло­та и дру­гой три­плет­ный ан­ти­ко­дон, ко­то­рый свя­зы­ва­ет­ся с ком­пле­мен­тар­ным ко­до­ном в мо­ле­ку­ле иРНК.

Це­поч­ка ин­фор­ма­ци­он­ной РНК обес­пе­чи­ва­ет опре­де­лён­ную по­сле­до­ва­тель­ность ами­но­кис­лот в це­поч­ке мо­ле­ку­лы белка.

Время жизни ин­фор­ма­ци­он­ной РНК ко­леб­лет­ся от двух минут (как у неко­то­рых бак­те­рий) до несколь­ких дней (как, на­при­мер, у выс­ших мле­ко­пи­та­ю­щих).

Затем ин­фор­ма­ци­он­ная РНК раз­ру­ша­ет­ся под дей­стви­ем фер­мен­тов, а нук­лео­ти­ды ис­поль­зу­ют­ся для син­те­за новой мо­ле­ку­лы ин­фор­ма­ци­он­ной РНК. Таким об­ра­зом, клет­ка кон­тро­ли­ру­ет ко­ли­че­ство син­те­зи­ру­е­мых бел­ков и их тип.

Трансляция пошагово:

  1. Рибосома узнаёт КЭП, садится на иРНК. 
  2. На Р-сайт рибосомы приходит первая тРНК с аминокислотой. 
  3. На А-сайт рибосомы приходит вторая тРНК с аминокислотой. 
  4. АК образуют пептидную связь.

     

  5. Рибосома делает шаг длиною в один триплет. 
  6. На освободившийся А-сайт приходит следующая тРНК. 
  7. АК образуют пептидную связь. 
  8. Процессы 5–7 продолжаются, пока рибосома не встретит стоп-кодон.

     

  9. Рибосома разбирается, отпускает полипептидную цепь. 

По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!

Резюме

Теперь вы знаете, что биосинтез необходим для выживания — без него клетка умрёт. Процесс биосинтеза белков включает в себя особые реакции, встречающиеся только в живой клетке, — это реакции матричного синтеза. 

Син­тез белка со­сто­ит из двух эта­пов: тран­скрип­ции (об­ра­зо­ва­ние ин­фор­ма­ци­он­ной РНК по мат­ри­це ДНК, про­те­ка­ет в ядре клет­ки) и транс­ля­ции (эта ста­дия про­хо­дит в ци­то­плаз­ме клет­ки на ри­бо­со­мах). Эти этапы сменяют друг друга и состоят из последовательных процессов.

Производство белка из метанотрофных бактерий | Клуб экспертов зернового рынка

  • В 60-е годы прошлого столетия 90 процентов всех кормов имели низкое содержание белка, корма к тому же были недостаточно сбалансированы по основным незаменимым аминокислотам, в первую очередь, по лизину и метионину.
  • В связи с этим, руководство СССР поставило задачу создания производств эффективного животного кормового белка на отечественной базе доступного сырья.
  • Частично проблему решал и решает импортный растительный белок бобовых, в частности — соевый шрот.

Белок животного происхождения — рыбная и мясокостная мука, не в состоянии решить данную проблему, т.к. рыбная мука дорого стоит и в основном импортная, нестабильна по качеству, а мясокостная мука в России запрещена к применению из-за риска коровьего бешенства.

В 70-х годах, в СССР приступили к строительству заводов БВК (Белково-витаминных концентратов) по производству кормовых дрожжей на парафинах нефти (паприн).

Их адреса: Светлый Яр в Волгоградской области, Кременчуг на Украине, Благовещенск в Башкирии, Мозырь и Новополоцк в Белоруссии, Кириши в Ленинградской области, Кстово на Нижегородчине, Ангарск в Иркутской области. Проектировался объект в Павлодаре.

В связи с чем, британский ученый Дж. Б. Картер в журнале “Нью Сайентист”, — отмечал в статье от 23 апреля 1981 года: «Давление политических и иных кругов в Западных странах препятствовало сколь-нибудь значительному развитию производства белка одноклеточных в СССР.

Однако в СССР работы в данном направлении продолжались целенаправленно, и в настоящее время он, вне всякого сомнения, является крупнейшим в мире производителем белка одноклеточных.

Развитие микробиологии даст Советскому Союзу не только независимость от импорта традиционного белка (соевый шрот), но и национальный источник микробного белка, не подверженный климатическим воздействиям, что характерно для производства злаковых овощных культур и кормовых трав.

Развитая промышленность СССР по производству белка демонстрирует уникальный характер решительных национальных усилий в освоении биотехнологии и является выдающимся достижением”.

Тремя годами позже, американский журнал “Биотехнология” дал прогноз: “Предприятия Главмикробиопрома в состоянии масштабировать производство аминокислот и рибофлавина для кормовых целей.

В случае соответствующего увеличения производства белка одноклеточных коэффициент конверсии белка в животный возрастет до 15—30 процентов, что характерно для Западных стран, и приведет к уменьшению или исключению зависимости СССР от импорта зерновых”.

Не смотря на усилия предпринимаемые правительством СССР в конце 80-х годов более 42 % объема всех кормов использовался в неполноценном (несбалансированном) виде, а еще 25% не был сбалансирован по отдельным компонентам. Поэтому расход зерна на тонну комбикормов в СССР был более чем вдвое выше, чем в Голландии и ежегодно он составлял 20—25 миллионов тонн.

В связи с чем, например в 1991 году СССР импортировал 2,1 миллиона тонн соевого шрота и 400 тыс. тонн соевых бобов. Соевый шрот (в основном генно-модифицированный) закупался и закупается сейчас в огромных количествах в США.

  1. Однако, с приходом перестройки все заводы БВК, производившие паприн, были в угоду США закрыты и практически разрушены.
  2. Между тем, научные разработки СССР в 80-х годах вышли на наиболее оптимальную технологию биосинтеза кормового белка на основе природного газа метана — это производство белка на базе использования метанотрофных бактерий.
  3. Метанотрофные бактерии в определенных условиях активно усваивают метан природного газа, быстро размножаются и наращивают свою массу, богатую ценным белком, набором аминокислот, витаминами и иными биологически активными веществами.

Скорость роста микробиологического белка значительно превышает скорость роста других белковых продуктов. Для сравнения: бык массой 500кг. способен в сутки синтезировать — 0,5-1,5 кг. белка; растения сои той же массой в фазе созревания семян 40 кг белка; а метанотрофные бактерии той же массой — до 1,5 т белка.

К 1987 году заводы БВК выпускали 1,1 миллиона тонн продукции (с содержанием чистого белка 55 тыс. тн.), что позволяло экономить 6,6 миллиона тонн фуражного зерна.

Потребность же советского животноводства оценивалась в 6 миллионов тонн кормового белка.

На БВК уже основательно стояло птицеводство, о чем говорил Вице-президент РАСХН Владимир Фисинин, тогда возглавлявший объединение “Птицепром”, в настоящее время он директор НИИТИП и он очень хорошего мнения о метанотрофном белке.

БВК охотно закупали Финляндия, Чехословакия, ГДР, Китай, Куба. За рубежом подобных предприятий не имелось, не считая отдельных установок в Англии.

Предприятие в Светлом Яре в Волгоградской области, где работала экспериментальная установка и белок производился в среде метана, по самой современной на тот момент технологии, была закрыта в 1994 г. компанией ЮКОС.

Белок метанотрофных бактерий (в СССР – гаприн) прошел полный комплекс длительных медико-биологических и хозяйственных испытаний на всех видах сельскохозяйственных живот¬ных, птице и рыбе. Полученные дан-ные свидетельствуют об эффективно¬сти применения гаприна в рационах животных.

Федеральное Министер¬ство сельского хозяйства в 1994 г. выпустило Технические условия и Наставление по применению гаприна в комбикормах и белково¬витаминных добавках для сельскохозяйственных животных, птицы и рыбы.

Применение белка, синтезированного на метане, разрешено к применению в кормах для животных в странах ЕС.

На сегодняшний день дефицит белковых кормовых продуктов только в России превышает 2 млн. тонн в год, а в мире он составляет более 30 млн. тонн в год. Мировой рынок потребления белка оценивается специалистами в 370 миллиардов долларов.

Потребность в белке столь велика, что учёные всего мира упорно ведут поиск новых источников сырья для его производства, в том числе и путем микробиологического синтеза. Заводы по производству белка на метане могут располагаться практически в любой точке России – где есть природный газ.

Белок имеет стабильное качество, производство не зависят от климата и времени года.

Западные компании заинтересованы в приобретении технологии биосинтеза белка на метане.

В частности американская фирма «Калиста», купившая старую советскую технологию у норвежской компании Норферм (К ним технология попала после объединения ГДР с ФРГ), планирует завершить строительство завода по производству белка из метенотрофных бактерий в 2018 году.

Кстати, на основе старой технологии пытаются работать и другие западные компании. Так же пытаются разработать эту технологию и в Китае, предполагая работать на российском газе газопровода «Сила Сибири».

Чтобы снова не опоздать, а затем не догонять «западные технологии», или что ещё хуже, импортировать их метанотрофный белок, предлагаем уже сегодня сконцентрировать усилия на внедрение в практику нашей новой технологии производства кормового белка из метанотрофных бактерий.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

Считаем данную технологию, относящуюся к разряду природоподобных, прогрессивной и способной обеспечить российскую комбикормовую промышленность эффективным белком животного происхождения, комплексно балансирующим комбикорма и создающим условия для интенсификации отечественного животноводства, что обеспечит перерабатывающие предприятия безопасным сырьем, а население — чистыми продуктами питания.

В выступлении Президента России В.В. Путина на 70-й сессии Генассамблеи ООН 28 сентября 2015 года, в частности, был затронут вопрос природоподобных технологий.

Он, в частности сказал: «Речь должна идти о внедрении принципиально новых, природоподобных технологиях, которые не наносят урон окружающему миру, а существуют с ним в гармонии и позволят восстановить нарушенный человеком баланс между биосферой и техносферой».

Бизнес планирование строительства завода по производству белка показывает что финансовые вложения (1млрд. руб.) окупаются менее чем за 4 года, с внутренней нормой доходности в 96%.

Источник: promtreid.com

Современное состояние и перспективы биотехнологии — Гипермаркет знаний

Гипермаркет знаний>>Биология>>Биология 10 класс>> Современное состояние и перспективы биотехнологии

Современное состояние и перспективы биотехнологии

1.    Что такое биотехнология?2.    Какие биотехнологические процессы и производства вам известны?

3.    Где могут быть использованы методы клеточной и генной инженерии?

Биотехнология в практической деятельности человека.

С древних времен известны отдельные биотехнологические процессы, используемые в сферах практической деятельности человека. К ним относятся хлебопечение, виноделие, пивоварение, приготовление кисломолочных продуктов и т. д.

Наши предки не имели представления о сути процессов, лежащих в основе таких технологий, но в течение тысячелетий, используя метод проб и ошибок, совершенствовали их. Биологическая сущность этих процессов была выявлена лишь в XIX в.

благодаря научным открытиям Л. Пастера. Его работы послужили основой для развития производств с использованием разнообразных видов микроорганизмов. В первой половине XX в.

стали применять микробиологические процессы для промышленного получения ацетона и бутанола, антибиотиков, органических кислот, витаминов, кормового белка.

Успехи, достигнутые во второй половине XX в. в области цитологии, биохимии, молекулярной биологии и генетики, создали предпосылки для управления элементарными механизмами жизнедеятельности клетки, что способствовало бурному развитию биотехнологии.

Благодаря селекции высокопродуктивных штаммов микроорганизмов, эффективность биотехнологических процессов увеличилась в десятки и сотни раз.

Особенностью биотехнологии является то, что она сочетает в себе самые передовые достижения научно-технического прогресса с накопленным опытом прошлого, выражающимся в использовании природных источников для создания полезных для человека продуктов. Любой биотехнологический процесс включает ряд этапов:

подготовку объекта, его культивирование, выделение, очистку, модификацию и использование полученных продуктов.

Многоэтапность и сложность процесса обусловливает необходимость привлечения к его осуществлению самых разных специалистов: генетиков и молекулярных биологов, цитологов, биохимиков, вирусологов, микробиологов и физиологов, инженеров-технологов, конструкторов биотехнологического оборудования и др.

Перспективы развития биотехнологии.

Дальнейшее развитие биотехнологии как отрасли сельскохозяйственного производства позволит решить многие важные проблемы человечества.

Острейшей проблемой в целом ряде слаборазвитых стран, стоящей перед человечеством, является нехватка продовольствия. В связи с этим усилия биотехнологов направлены на повышение эффективности растениеводства и животноводства.

Культурные растения страдают от сорняков, насекомых-вредителей, фитопатогенных грибов, бактерий, вирусов и т, д. Перечисленные вредные факторы наряду с неблагоприятными погодными условиями значительно снижают урожайность сельскохозяйственных растений.

Ученые не только создают высокоурожайные сорта растений, устойчивые к неблагоприятным факторам, но и разрабатывают биотехнологические пути защиты растений.

На промышленную основу поставлен выпуск биологических средств борьбы с вредителями на основе использования их естественных врагов и паразитов, а также токсических продуктов, образуемых живыми организмами.

Важное место в повышении урожайности растений отводится биологическим удобрениям, включающим в себя различные бактерии. Так, азотобактерин обогащает почву не только азотом, но и витаминами, фитогормонами и биорегуляторами. Препарат фосфобактерин превращает сложные органические соединения фосфора в простые, легко усвояемые растениями.

Все большее распространение получает использование биогумуса — высокоэффективного естественного органического удобрения. Его получают в процессе переработки органических отходов дождевыми червями.

В настоящее время для этой цели используется выведенный селекционерами США красный калифорнийский червь, который обеспечивает быстрый прирост биомассы и скорейшую утилизацию субстрата.

Как показали исследования, биогумус значительно эффективнее других удобрений, существенно повышает плодородие почвы и ее устойчивость к водной и ветровой эрозии, быстро восстанавливает плодородие низкоплодородных участков, улучшает экологическую обстановку.

Промышленное получение биогумуса освоено во многих странах. В нашей стране промышленным разведением червей на основе использования органических отходов для производства биогумуса занимаются с 80-х годов XX столетия.

Прутин в биотехнологии. Биоинтез прутина как белок одноклеточных.

В последние годы повышается интерес к дождевым червям как к источнику животного белка для сбалансирования кормовых рационов животных, птиц, рыб, пушных зверей, а также белковой добавки, обладающей лечебно-профилактическими свойствами.

Все шире на промышленной основе применяется метод вегетативного размножения сельскохозяйственных растений культурой тканей. Он позволяет не только быстро размножить новые перспективные сорта растений, но и получить незараженный вирусами посадочный материал (рис. 103).

Для повышения продуктивности животных нужен полноценный корм. Микробиологическая промышленность выпускает кормовой белок на базе различных микроорганизмов — бактерий, грибов, дрожжей, водорослей.

Как показали промышленные испытания, богатая белками биомасса одноклеточных организмов с высокой эффективностью усваивается сельскохозяйственными животными. Так, 1 т кормовых дрожжей позволяет сэкономить 5—7 т зерна.

Это имеет большое значение, поскольку 80% площадей сельскохозяйственных угодий в мире отводятся для производства корма скоту и птице.

Особенно широко успехи биотехнологии применяются в медицине. В настоящее время с помощью биосинтеза получают антибиотики, ферменты, аминокислоты, гормоны.

Например, гормоны раньше, как правило, получали из органов и тканей животных. Даже для получения небольшого количества лечебного препарата требовалось много исходного материала. Следовательно, трудно было получить необходимое количество препарата, и он был очень дорог.

Так, инсулин, гормон поджелудочной железы, — основное средство лечения при сахарном диабете. Этот гормон надо вводить больным постоянно. Производство его из поджелудочной железы свиньи или крупного рогатого скота сложно и дорого.

К тому же молекулы инсулина животных отличаются от молекул инсулина человека, что нередко вызывало аллергические реакции, особенно у детей, В настоящее время налажено биохимическое производство человеческого инсулина. Был получен ген, осуществляющий синтез инсулина.

С помощью генной инженерии этот ген был введен в бактериальную клетку, которая в результате приобрела способность синтезировать инсулин человека.

Помимо получения лечебных средств, биотехнология позволяет проводить раннюю диагностику инфекционных заболеваний и злокачественных новообразований на основе применения препаратов антигенов, ДНК/РНК-проб.С помощью новых вакцинных препаратов возможно предупреждение инфекционных болезней.

Угроза исчерпания традиционных источников энергии побудила человечество к поиску альтернативных путей ее получения.

Биотехнология позволяет получать экологически чистые виды топлива путем биопереработки отходов промышленного и сельскохозяйственного производств.

Например, созданы установки, в которых используются бактерии для переработки навоза и других органических отходов в биогаз. Из 1 т навоза получают до 500 м3 биогаза, что эквивалентно 350 л бензина, при этом качество навоза как удобрения улучшается.

Биотехнологические разработки находят все большее применение в добыче и переработке полезных ископаемых.Несомненно, уже полученные и ожидаемые в будущем достижения в области биотехнологии будут использоваться практически во всех сферах человеческой деятельности. В то же время современные исследования требуют тщательного анализа всех возможных опасных последствий их проведения.

В настоящее время во многих странах, в том числе и в России, активно разрабатываются законы, направленные на то, чтобы ввести в правовые рамки работы по генной инженерии, по практическому использованию трансгенных организмов, а также исследований по клонированию человека. Важно, чтобы новые научные исследования и разработки в биотехнологии были направлены на благо человечества.

Биологические удобрения. Биогумус. Культура тканей. Экологически чистые виды, топлива.

1.    Чем объясняется бурное развитие биотехнологии?2.    Каков вклад биотехнологии в повышение эффективности растениеводства и животноводства?3.    Почему считают, что в медицине биотехнологи добились наибольших успехов?

4.    Почему многие ученые и общественные деятели высказывают опасения в связи с развитием биотехнологических исследований и производств?

Обсудите проблемы создания трансгенных организмов и клонирования человека. Какие перспективы открывают эти исследования? К каким негативным последствиям могут привести неконтролируемые исследования в этой области?

Краткое содержание главы

Селекция — наука о выведении новых и совершенствовании существующих сортов растений, пород животных и штаммов микроорганизмов с необходимыми человеку свойствами.

Сортом, породой и штаммом называют популяцию растений животных или микроорганизмов искусственно созданных человеком, которая характеризуется определенным генофондом, наследственно закрепленными морфологическими и физиологическими признаками.

Теоретической базой селекции является генетика. Она также использует достижения теории эволюции, молекулярной биологии, биохимии и других биологических наук.

Основные методы селекции включают отбор, гибридизацию, мутагенез. В основе селекции лежит разработанная Ч. Дарвином концепция искусственного отбора, На ранних этапах социальной эволюции человека искусственный отбор был бессознательным.

По мере развития цивилизации искусственный отбор стал методическим, при котором человек стал сознательно систематически отбирать существа с определенными качествами. Во второй половине XX в. стали применяться принципиально новые методы — клеточная и генная инженерия.

Эти направления легли в основу новой области биологии — биотехнологии.

Биотехнология — это промышленное использование биологических процессов и систем на основе выращивания высокоэффективных форм микроорганизмов, культур клеток и тканей растений и животных с необходимыми человеку свойствами.

Уже полученные и ожидаемые в будущем достижения в области биотехнологии открывают большие возможности в решении многих проблем, стоящих перед человечеством. В то же время современные биотехнологические исследования требуют тщательного анализа всех возможных опасных последствий их широкого использования,

Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 10 классОтправлено читателями с интернет-сайта

Онлайн библиотека с учениками и книгами, плани-конспекти уроковс Биологии 10 класса, книги и учебники согласно календарного плана планирование Биологии 10 класса

Содержание урока
конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии
закрытые упражнения (только для использования учителями)
оценивание Практика
задачи и упражнения,самопроверка практикумы, лабораторные, кейсы
уровень сложности задач: обычный, высокий, олимпиадный
домашнее задание Иллюстрации
иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа
рефераты
фишки для любознательных
шпаргалки
юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения
внешнее независимое тестирование (ВНТ)
учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности
словарь терминов прочие Только для учителей
идеальные уроки календарный план на год методические рекомендации программы
обсуждения

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Достижения биотехнологии

⇐ ПредыдущаяСтр 31 из 41Следующая ⇒

Биотехнология – стремительно развивающаяся и интегрирующая наука, пронизывающая все биологические науки и направления исследований.

Современная биотехнология – это междисциплинарная наука и отрасль производства, которая базируется на использовании биологических объектов и систем при получении пищевых продуктов, энергии, медицинских препаратов; при очистке сточных вод, переработке отходов и др.

Интерес к этой науке и отрасли человеческой деятельности в последние годы растет очень быстро.

Использования микроорганизмов при производстве различных сортов пива, вина и сброженных продуктов совершенствовались тысячелетиями, и все же до недавнего времени в них было больше искусства, чем технологии. Только с развитием микробиологии стало возможным контролировать качество продуктов, процессы ферментации стали более надежными и воспроизводимыми, появились новые типы продукции.

Наиболее успешными представляются два взаимосвязанных направления развития этой отрасли биотехнологии: Во-первых, в дополнение к традиционным способам производства пищи могут прийти биореакторы, в которых будут расти клетки животных и растений или же микроорганизмы.

Во-вторых, эта альтернативная традиционному сельскому хозяйству технология будет становиться все более производительной благодаря использованию методов генетической инженерии, которые позволяют получить улучшенные линии клеток и штаммы микроорганизмов.

Многообразны связи биотехнологии с медициной в производстве антибиотиков. Антибиотики – это специфические продукты жизнедеятельности определенных групп микроорганизмов, обладающие высокой физиологической активностью и подавляющие развитие патогенных микроорганизмов. Они избирательно задерживают их рост или полностью подавляют развитие.

Благодаря применению технологии рекомбинантных ДНК были достигнуты крупные успехи в медицине. Разработаны эффективные методы промышленного производства интерферона человека.

Помимо гена интерферона были клонированы гены инсулина и гормона роста человека.

В целях крупномасштабного производства были клонированы гены многих других белков человека и животных, необратимые для диагностики и лечения.

Биотехнология открывает медицине новые пути получения ценных гормональных препаратов.

Для лечения сахарного диабета применяется инсулин – пептидный гормон островков Лангерганса поджелудочной железы. Его дефицит проявляется повышением уровня глюкозы в крови.

Ранее инсулин получали из поджелудочных желез домашних животных (крупный рогатый скот, свиньи).

Однако препарат отличается от человеческого инсулина 1 – 3 аминокислотными заменами и мог вызывать у человека аллергические реакции.

Значительный вклад биотехнология вносит в промышленное производство пептидных гормонов и стероидов. Методы микробиологической трансформации позволили резко сократить число этапов химического синтеза кортизона – гормона надпочечников, применяемого для лечения ревматоидного артрита.

Имеются разработки по получению гормона щитовидной железы тироксина из микроводорослей.

Важное значение в медицине играет вакцинация против гриппа, гепатитов, кори, острых респираторных болезней. Актуальным является вопрос изготовления вакцин.

биотехнология играет все возрастающую роль, в частности, в том, что касается разработки новых или усовершенствования существующих способов переработки отходов.

50 Биотехнология производства «одноклеточного» белка

Главной проблемой, стоящей перед человечеством, является взрывоподобный рост населения. Естественно, что традиционное сельское хозяйство не сможет удовлетворить пищевые потребности растущей численности населения, особенно белковым питанием. И тем не менее продуктивность сельского хозяйства во всех его отраслях постоянно повышается практически по всему миру.

Определенные успехи достигнуты в получении белка с помощью микробного синтеза. Это направление получило название производства одоклеточного белка (SСP), поскольку большинство микроорганизмов, используемых для этих целей, растут в виде одноклеточных или мицелиальных (нитевидных) особей, а не как сложные многоклеточные организмы (растения или животные).

Понятие «съедобные микробы» звучит несколько странно, однако люди давно распознали питательную и вкусовую ценность некоторых микроорганизмов, а именно грибов.

Но даже и в этом случае скептицизм и предвзятость оказывают существенное влияние на отношение людей к этому великолепному пищевому продукту.

И в то время как во многих странах грибы достаточно широко употребляются в пищу, население других стран их игнорирует и избегает использовать.

И все же на протяжении последних двух-трех десятилетий отмечается явный растущий интерес к использованию различных микроорганизмов для производства пищевых продуктов, в частности дня скармливания домашним животным.

Полагают, что применение одноклеточного белка, получаемого на дешевых субстратах, для корма животных окажет большое влияние на улучшение питания людей в результате снижения их конкуренции с животными за растительную пищу, богатую белком.

Преимущества микроорганизмов как продуцентов белка состоят в следующем: микроорганизмы обладают высокой скоростью накопления биомассы; микробные клетки способны накапливать очень большие количества белка; в микробиологическом производстве вследствие высокой специфичности микроорганизмов отсутствует многостадийность процесса; а сам процесс биосинтеза осуществляется в мягких условиях при температурах 30–45° С, рН 3–6 и давлении около 0,1 МПа. Помимо всего прочего, микробиологический путь получения богатой белком биомассы менее трудоемкий по сравнению с получением сельскохозяйственной продукции и органическим синтезом белка.

Экономическая целесообразность одноклеточного белка определяется его конкурентной способностью по сравнению с существующими продуктами.

Препараты микробного белка богаты данным веществом и могут длительное время храниться и транспортироваться на дальние расстояния.

Применение одноклеточного белка предполагается в будущем преимущественно в качестве кормовых добавок в пищу животным в целях замены других белковых материалов.

⇐ Предыдущая26272829303132333435Следующая ⇒

Date: 2016-11-17; view: 638; Нарушение авторских прав

Ссылка на основную публикацию
Adblock
detector