Роль натрия и калия в регуляции бронхиальной проводимости.

Роль натрия и калия в регуляции бронхиальной проводимости.

Калий по большей части является внутриклеточным катионом, и его концентрация внутри и снаружи клетки регулируется различными механизмами. При их нарушении развивается гиперкалиемия или гипокалиемия. Гиперкалиемией называется состояние, при котором концентрация калия во внеклеточной жидкости составляет более 5 ммоль/кг.

По данным исследований, общее содержание калия в организме составляет около 50 ммоль/л, из них 98 % находится внутри клеток.

В среднем внутриклеточная концентрация калия составляет 150 ммоль/л, а внеклеточная — около 4 ммоль/л.

Поддержание соотношения концентрации калия внутри и снаружи клетки зависит от нескольких факторов: поступления калия с пищей и питьем, его перераспределения между внутри- и внеклеточными компартментами и почечной экскреции.

Гомеостаз калия

Около 90 % поступающего энтерально калия экскретируется почками и частично элиминируется со стулом. Однако почечная экскреция проходит медленно, и на начальных этапах организм нуждается во внепочечных механизмах поддержания концентрации калия.

Почечная экскреция калия

Скорость экскреции почками зависит от ряда факторов: концентрации натрия в канальцах, ренин-ангиотензин-альдостероновой системы, вазопрессина, количества поступившего калия и его плазменной концентрации, кислотно-основного состояния и скорости диуреза. Секреция калия происходит пассивно в петле дистального нефрона и зависит от трансмембранного градиента концентраций, генерируемого в основном за счет реабсорбции натрия.

Альдостерон играет основную роль в гомеостазе калия при помощи почечных механизмов.

В результате его воздействия на соединительные сегменты главных клеток кортикальных и медуллярных собирательных трубочек и собирательного протока он увеличивает секрецию калия.

Если рассматривать механизм его действия на клеточном уровне, альдостерон открывает апикальные натриевые каналы и повышает активность Na+/K+-АТФазы на базолатеральной мембране.

Главным стимулом выделения альдостерона является ангиотензин II: повышение его плазменной концентрации уже на 0,1 ммоль/л вызывает значительное усиление синтеза альдостерона в клубочковой зоне надпочечников.

Альдостерон также участвует во внепочечных механизмах регуляции, усиливая секрецию калия в кишечнике и слюнных железах. В норме кишечник обеспечивает около 5 % экскреции калия, однако при почечной недостаточности кишечная экскреция увеличивается до 30–50 %.

  • Увеличение плазменной концентрации калия является независимым от альдостерона стимулятором Na+/K+-АТФазы в дистальных сегментах трубочек, которая, как мы помним, способствует увеличению секреции калия почками;
  • Увеличение темпа диуреза и доставки Na+ повышает скорость секреции К+;
  • При состояниях, когда доставка натрия нарушена (гипонатриемия, действие лекарственных препаратов: амилорид, триамтерен и др.), уменьшается электрохимический градиент, обуславливающий секрецию К+.

Внепочечные механизмы регуляции концентрации К+

Инсулин

Физиологические уровни инсулина играют важную роль в регуляции уровня калия. Инсулин является стимулятором Na+/K+-АТФазы в клетках печени, мышц, жировых клетках, что способствует поступлению К+ внутрь клетки. Поэтому при состояниях, сопровождающихся недостатком выработки инсулина (диабет), часто развивается гиперкалиемия.

Катехоламины

Катехоламины, особенно бета-2-агонисты, стимулируют Na+/K+-АТФазу клеток и приводят к перемещению К+ внутрь клетки.

Введение эпинефрина, альбутерола или сальбутамола снижает уровень калия в крови, однако изопротеренол и бета-1-агонисты не оказывают на его концентрацию никакого эффекта.

Альфа-адренергические агонисты, такие как фенилэфрин, мешают проникновению калия в клетку, тем самым повышая его концентрацию в плазме.

Кислотно-основное состояние

При снижении рН на 0,1 ЕД концентрация калия в плазме повышается на 0,6 ммоль/л (в пределах от 0,3 до 1,3 ммоль/л), и, соответственно, уменьшается при повышении рН. Однако замечено, что респираторный ацидоз вызывает меньшее изменение концентрации калия, чем метаболический.

Псевдогиперкалиемия

Псевдогиперкалиемия — это явление повышения концентрации калия in vitro при нормальных его значениях in vivo. О псевдогиперкалиемии можно говорить, когда разница концентрации калия между анализируемым образцом и плазмой пациента составляет более 0,5 ммоль/л.

  • К данному состоянию может приводить множество причин: тромбоцитоз более 750 000 в мм3, лейкоцитоз с количеством клеток более 50 000 в мм3, наследственный сфероцитоз, гемолиз в образце крови, позднее проведение сепарации плазмы и эритроцитов, использование для образца крови неподходящих антикоагулянтов, неправильно проведенная венепункция, а также сжатие кулака во время пункции.
  • По данным исследований, использование турникета для проведения венепункции не играет никакой роли в развитии псевдогиперкалиемии.
  • Причины гиперкалиемии
  • I. Повышенное поступление калия в организм:
  • Экзогенное:
  • Пища, содержащая значительное количество калия (например, бананы и др.);
  • Соли хлорида калия;
  • Калий, входящий в состав пенициллина G;
  • Консервирующий раствор Коллинза;
  • Переливание крови (увеличение количества калия при длительном хранении крови);
  • Геофагия;
  • Лекарственные растения: люцерна, одуванчик, крапива, молочай и др.

Эндогенное:

  • Усиленный гемолиз;
  • Повышенная физическая активность;
  • Желудочно-кишечное кровотечение;
  • Повышенный катаболизм;
  • Рабдомиолиз;
  • Распад опухоли.
  1. II. Снижение экскреции калия почками:
  2. 1. Хроническая болезнь почек;
  3. 2. Острая почечная недостаточность;
  4. 3. Нарушение дистальной канальцевой секреции (первичное и вторичное):
  • Первичное нарушение канальцевой секреции;
  • Системная красная волчанка;
  • Серповидно-клеточная анемия;
  • Обструктивная уропатия;
  • Последствия трансплантации почек;
  • Амилоидоз почек;
  • Тубулоинтерстициальный нефрит;
  • Папиллярный некроз.

4. Нарушения ренин-ангиотензин-альдостероновой системы:

  • Лекарственные препараты: ингибиторы АПФ и блокаторы рецепторов АТ, НПВС, ингибиторы кальциневрина (такролимус, циклоспорин), гепарин, препараты лития, антагонисты альдостерона (спиронолактон);
  • Первичный гипоальдостеронизм;
  • Хроническая гиперплазия надпочечников;
  • Первичный гипоренизм;
  • Гипоренический гипоальдесторонизм (IV тип почечного канальцевого ацидоза);
  • Надпочечниковая недостаточность:—  Первичная (болезнь Аддисона);—  Деструкция надпочечников в результате развития инфекционных заболеваний (ВИЧ, ЦМВ, Mycobacterium tuberculosis, Mycobacterium avium);—  Блокада натриевых каналов главных клеток, вызванное приемом различных лекарств, таких как триамтерен, амилорид, триметоприм, пентамидин и т. д.;—  Синдром Гордона.

5. Нарушение транспорта натрия в дистальных каналах:

  • Хроническая сердечная недостаточность;
  • Цирроз печени;
  • Сольтеряющая нефропатия;
  • Почечная недостаточность.
  • III. Перемещение калия между клетками:
  • 1. Гипергликемия;
  • 2. Применение некоторых лекарственные препаратов:
  • Неселективные бета-блокаторы;
  • Сукцинилхолин;
  • Маннитол;
  • Дигоксин (ингибитор Na+/K+-ATФазы);
  • Соматостатин;
  • Внутривенное введение аминокислот (аргинин, лизин, эпсилон-аминокапроновая кислота);

3. Острый метаболический ацидоз, вызванный минеральными кислотами;

4. Действие трав (ингибиторов Na+/K+-ATФазы): олеандр, наперстянка, ягоды тиса, кендырь, сибирский женьшень и т. д.;

  1. 5. Избыточные физические нагрузки;
  2. 6. Острый гемолиз;
  3. 7. Отравление фтором;
  4. 8. Гиперкалиемический периодический паралич;
  5. Клинические проявления
  6. Как упоминалось ранее, токсический эффект гиперкалиемии проявляется в деполяризации мембран клеток сердца и скелетной мускулатуры.

Кардиальные проявления гиперкалиемии включают в себя: остроконечные Т-волны, удлинение РR-интервала, расширение QRS-комплекса вместе с исчезновением электрической активности предсердий, фибрилляцию желудочков (ФЖ), асистолию. ФЖ и асистолия могут быть начальными проявлениями гиперкалиемии, однако даже при уровне калия выше 9 ммоль/л ЭКГ-проявления могут отсутствовать.

Роль натрия и калия в регуляции бронхиальной проводимости.

Со стороны нейромышечной системы гиперкалиемия проявляется диареей, болью в животе, миалгией и вялым параличом. Факторами, утяжеляющими проявления гиперкалиемии, служат сопутствующие метаболические нарушения, такие как метаболический ацидоз, гипокальциемия или гипонатриемия.

Смертность от гиперкалиемии у госпитализированных пациентов составляет от 1,7 до 41 %. Наибольший вклад в эти цифры вносят кардиальные причины. В исследованиях смертности при гиперкалиемии выявлено, что зачастую лечение неадекватно либо вовсе не проводится.

Лечение

Гиперкалиемия является жизнеугрожающим состоянием, и ее лечение должно проводиться незамедлительно. Считается, что уровень калия ≥ 6 ммоль/л требует более агрессивной терапии. При меньшем превышении верхней границы нормы целью лечения является выведение излишков калия из организма и предупреждение повторных эпизодов гиперкалиемии путем поиска причин ее возникновения и их устранения.

Как только у пациента регистрируется повышение уровня калия, то, в зависимости от тяжести состояния, проводится осмотр по алгоритму ABCDE, а также налаживается электрокардиографический мониторинг в 12-ти отведениях.

Во время мониторинга ЭКГ выявляются возможные проявления нарушений проводимости и возбудимости: остроконечные Т-волны, плоские зубцы Р или их отсутствие, синусоидальные волны, удлинение РR-интервала, расширение QRS-комплекса, желудочковая тахикардия.

Роль натрия и калия в регуляции бронхиальной проводимости.

При выявлении нарушений на ЭКГ назначается введение препаратов кальция. Кальций является прямым антагонистом калий-индуцированной внутриклеточной деполяризации и при введении способен нормализовать мембранный потенциал.

Рекомендованные дозы кальция: кальция глюконат 10 % ー 30 мл или кальция хлорид 10 % ー 10 мл. Препараты вводятся внутривенно болюсно за 5–10 мин, для этого необходим хороший внутривенный доступ.

Эффект от препаратов кальция развивается в течение нескольких минут, однако длится недолго (30–60 минут), при необходимости повторная доза может вводится через 5 минут.

Однако стоит помнить об опасности развития жизнеугрожающих аритмий при применении данных препаратов у пациентов с сопутствующей интоксикацией дигоксином: ввиду этого во время введения кальция необходимо еще тщательнее наблюдать за пациентом.

Следующим шагом в терапии гиперкалиемии является введение инсулина. Как говорилось ранее, инсулин обладает сильным гипокалиемическим эффектом, вне зависимости от уровня глюкозы в крови.

Существует множество режимов введения инсулина при гиперкалиемии: самый распространенный — это введение внутривенно 10 ЕД быстродействующего инсулина на фоне инфузии 25–50 грамм глюкозы с последующим контролем уровня глюкозы крови.

При наличии значительной гипергликемии (более 250 мг/дл или 13,9 ммоль/л) допустимо введение инсулина без сопутствующего введения глюкозы. Данный режим введения позволяет снизить уровень калия более чем на 0,5 ммоль/л у всех пациентов.

Гипокалиемический эффект глюкозо-инсулиновой смеси развивается через 10 минут, а максимальный эффект (снижение концентрации калия от 0,65 до 1 ммоль/л) достигается к 30 минуте и длится от 4 до 6 часов.

Следующей опцией является применение катехоламинов. Катехоламины активируют Na+/K+-АТФазу клеток и способствуют переходу калия внутрь клетки.

Для данных целей целесообразно использовать бета-2-агонисты (адреналин, альбутерол, тербуталин, сальбутамол, сальметерол) внутривенно либо через небулайзер или дозированный ингалятор.

Данные препараты позволяют снизить уровень калия от 0,5 до 1,5 ммоль/л.

Начало гипокалиемического эффекта наступает спустя 3–5 минут с достижением максимума к 30 минуте при внутривенном введении и к 60 минуте при использовании небулайзера; общая длительность действия от 3 до 6 часов. Для ингаляции через небулайзер предпочтительнее применять альбутерол 10–20 мг или сальбутамол 10–20 мг.

Побочными эффектами бета-2-агонистов является тремор и тахикардия, а также — при развитии гипогликемии, — скрытие ее симптомов. Применение бикарбоната при гиперкалиемии не доказало своей эффективности, и с учетом риска развития гипернатриемии и перегрузки жидкостью не рекомендуется в качестве начальной или монотерапии.

Читайте также:  Тирозол - инструкция по применению, аналоги, отзывы и формы выпуска (таблетки 5 мг и 10 мг) препарата для лечения тиреотоксикоза у взрослых, детей и при беременности, алкоголь и прибавка в весе

Роль натрия и калия в регуляции бронхиальной проводимости.

Удаление калия из организма

Диуретики

Петлевые или тиазидные диуретики могут играть важную роль в терапии хронической гиперкалиемии. Однако их применение при острой гиперкалиемии ограничено ввиду значительных потерь натрия при достижении необходимого уровня калия, а также нарушений водного баланса. Также зачастую у пациентов имеется почечная недостаточность, что ограничивает применение диуретиков.

Ионообменные смолы

Полистирена сульфонат натрия (Кеоксалат) — ионообменная смола, обменивающая катионы калия на натрий. Также широко распространен препарат кальция резониум, связывающий и выводящий избытки калия.

Во время продолжительного контакта (в течение не менее 30 минут) в кишечнике с клетками, секретирующими калий, каждый грамм препарата связывает от 0,65 до 1 ммоль калия, который затем выводится с калом.

Данные препараты могут использоваться как per rectum с помощью клизмы, так и орально в виде таблеток.

Главным ограничением применения смол является развитие осмотической диареи спустя 2 часа с максимумом через 4–6 часов, а также вероятность развития интестинального некроза.

Противопоказано применение смол у пациентов с кишечной непроходимостью или ишемией кишечника и в раннем послеоперационном периоде после проведения трансплантации почек.

Ионообменные смолы могут использоваться как монотерапия при хронической гиперкалиемии или острой гиперкалиемии легкой степени с уровнем калия менее 6 ммоль/л с оценкой эффективности лечения.

Диализ

Удаление калия из организма методом гемодиализа или другим методом почечно-заместительной терапии (ПЗТ) — самый эффективный метод из ныне доступных. Различные режимы диализа отличаются скоростью развития эффекта.

Традиционный гемодиализ снижает уровень калия значительно быстрее, чем перитонеальный диализ или продолжительные режимы (продолжительная вено-венозная гемофильтрация, продолжительный вено-венозный гемодиализ или продолжительная вено-венозная гемодиафильтрация).

Исследования показали, что с помощью гемодиализа скорость снижения калия может достигать 25–50 ммоль/час со значительным снижением уровня калия в плазме (около 1,3 ммоль/л) в течение первого часа терапии.

Во время обычного гемодиализа, который обычно включает одновременную ультрафильтрацию и диализ, удаление калия ультрафильтрацией составляет около 15 % всего удаленного калия, а методом диализа — оставшиеся 85 %.

Количество удаленного калия зависит от содержания калия в диализате и его градиента с плазмой, длительности сессии диализа, размера и проницаемости мембраны фильтра и объема ультрафильтрации.

После проведения неотложных мероприятий по снижению уровня калия необходимо провести анализ истории болезни, диеты пациента, принимаемых препаратов (прекратить прием препаратов, повышающих уровень калия), и устранить причины, которые могут привести к повторной гиперкалиемии. В последующем до стабилизации уровня калия у данных пациентов рекомендуется его мониторирование каждые 2 часа и, при необходимости, повторение мероприятий по алгоритму.

Источники:

  1. Don B, Sebastian A, Cheitlin M, Christiansen M, Schambelan M. Pseudohyperkalemia caused by fist clenching during phlebotomy. N Engl J Med. 1990;322:1290-1292.

  2. Evans K. J., Greenberg A. Hyperkalemia: a review //Journal of intensive care medicine. – 2005. – Т. 20. – №. 5. – С. 272-290.

Что такое гиперкалиемия?

Гиперкалиемией называют состояние, при котором уровень сывороточного калия превышает 5 ммоль/л. Гиперкалиемия встречается у 1-10 % пациентов, госпитализируемых в больницы.

Гиперкалиемией называют состояние, при котором уровень сывороточного калия превышает 5 ммоль/л. Гиперкалиемия встречается у 1-10 % пациентов, госпитализируемых в больницы. Количество пациентов с гиперкалиемией увеличилось в последние годы в связи с увеличением числа пациентов, принимающих лекарства, влияющие на ренин-ангиотензин-альдостероновую систему (РААС).

Роль натрия и калия в регуляции бронхиальной проводимости.Калий внутри организма человека

Калий – важнейший электролит организма человека. Он играет ключевую роль в проведении нервных импульсов и сокращении мышц. 98% калия сосредоточено во внутриклеточной жидкости, концентрация калия здесь достигает 140 ммоль/л. Вне клеток находится только 2% калия, концентрация здесь составляет 3,8-5,0 ммоль/л.

  • Роль калия в организме
  • Калий – основной внутриклеточный катион (положительно заряженный ион) в отличие от натрия – основного внеклеточного катиона.
  • Функционально калий и натрий связаны между собой:
  • Создание мембранного потенциала, важного для мышечного сокращения (скелетных и сердечной мышцы), обеспечивается путем поддержания высокой концентрации натрия вне клетки и калия внутри клетки (натрий-калиевый насос, см.рис.1).
  • Поддержание кислотно-основного равновесия, осмотического баланса, водного баланса
  • Активация многих ферментов

Механизмы регуляции обмена калия

Чтобы поддерживать нормальный баланс калия (транспорт между внутри- и внеклеточной жидкостью) требуется слаженное взаимодействие всех регуляторных механизмов. Основной механизм регуляции уровня калия — выделение его почками. Этот механизм управляется гормоном надпочечников альдостероном.

Наличие этого механизма гарантирует, что, несмотря на высокое содержание калия в пище (от 40 ммоль до 200 ммоль), уровень его в сыворотке крови будет поддерживаться на постоянном уровне. Нарушение регуляции уровня калия, и, как следствие, повышение его в крови, может изменять возбудимость мембран.

А значит, будет нарушаться функция нервов, мышц, сердца.

Роль натрия и калия в регуляции бронхиальной проводимости. Рис.1 Схема регуляции чрезмембранного транспорта калия Концентрация калия внутри клеток поддерживается путем активного транспорта калия с помощью Na-K-АТФ-азы и пассивно за счет градиента концентрации. Скорость пассивного перемещения зависит от проницаемости калиевых каналов в клеточной мембране. Инсулин и бета-2-адреномиметики через цАМФ содействуют поглощению калия клетками, стимулируя Na-K-АТФ-азы. При дефиците инсулина и действии бета-2-андреноблокаторов увеличивается выход калия из клеток, что ведет к гиперкалиемии. Ацидоз, гиперосмолярность, лизис клеток также вызывает выход калия и увеличение уровня калия в крови. На схеме: ECF=extracelluar fluid (внутриклеточная жидкость); ICF=intracellular fluid (внеклеточная жидкость)

Альдостерон – минералкортикоидный гормон, синтезирующийся в коре надпочечников из холестерола.

Под действием альдостерона в почках увеличивается канальциевая реабсорбция (то есть обратное всасывание из первичной мочи) ионов натрия: альдостерон стимулирует переход натрия внутрь клеток, а калия – наружу (в межклеточное пространство, то есть далее калий переходит в мочу, выделяясь из огранизма) – см.рис.2.

Альдостерон также увеличивает секрецию почками ионов калия и водорода. Таким образом, в организме повышается содержание натрия и внеклеточной жидкости (в организме удерживается вода). Уровень альдостерона зависит от уровня натрия (Na+) и калия (К+).

При высокой концентрации калия и низкой концентрации натрия синтез и секреция альдостерона усиливается. Наиболее важное влияние на уровень альдостерона оказывается ренин-ангиотензиновая система (см.РААС). Также на уровень альдостерона оказывают влияние и другие факторы.

Многие факторы участвуют в развитии гиперкалиемии, которая развивается в результате снижения выделения калия или увеличении выхода калия из клеток.

Гиперкалиемия может быть ложной (псевдогиперкалиемия), это надо исключать в первую очередь (за исключением тех случаев, когда требуется экстренная помощь).

Псевдогиперкалиемия

Роль натрия и калия в регуляции бронхиальной проводимости.Псевдогиперкалиемией называется состояние, когда определенный в лаборатории уровень кальция не отражает уровня калия в организме. Это связано с тем, что внутриклеточный уровень калия очень высок и в определенных ситуациях он высвобождается из клеток после забора крови. В таких случаях, для подтверждения истинной гиперкалиемии следует повторить забор крови и одновременно измерить уровень калия в плазме и сыворотке. Концентрация в сыворотке выше концентрации в плазме на 0.2–0.4 ммоль/л, что связано с формированием сгустка и выходом калия из клеток в сыворотку.

Таблица 1: причины псевдогиперкалиемии

  • Не вовремя выполненный анализ
  • Забор крови из вены, в которую вводился калий
  • Слишком сильное давление при наложении жгута или интенсивная работа кулаком для наполнения вен
  • Гемолиз при протекании крови через тонкую иглу или травматическая венепункция
  • Длительное хранение крови
  • Высокий лейкоцитоз или тромбоцитоз (значительно повышенный уровень лейкоцитов или тромбоцитов)
  • Необычные генетические нарушения (семейная гиперкалиемия)

Гиперкалиемия при повышенном поступлении калия

Чрезмерное поступление калия с пищей может способствовать гиперкалиемии, если параллельно снижается выделение калия с мочой. При нормальной функции почек весь калий должен выводиться.

Таблица 2: продукты с высоким содержанием калия

  • Заменители соли
  • Фиги
  • Патока
  • Отруби, злаки, пшеничные ростки
  • Овощи (шпинат, томаты, морковь, картофель, брокколи, лимская фасоль, цветная капуста) и грибы
  • Сушеные фрукты, орехи, семечки
  • Фрукты (бананы, киви, апельсины, манго, дыня)

Гиперкалиемия может быть связана с гемотрансфузией — внутривенным введением клеток крови, из которых калий выходит во внеклеточное пространство, со слишком быстрым введением препаратов кальция для лечения гипокалиемии, при высоком содержании калия при парентеральном питании.

Гиперкалиемия, связанная с выходом калия из клеток

Некоторые экзогенные и эндогенные факторы могут нарушать обмен калия между межклеточной и внутриклеточной жидкостями и увеличивать концентрацию калия в сыворотке.

Однако, этот механизм редко вызывает тяжелую гиперкалиемию, за исключением тех случаев, когда фактором является, например, повреждение тканей, некроз (местная гибель тканей в результате повреждения), рабдомиолиз, распад опухоли, тяжелые ожоги.

Таблица 3:причины перераспределения калия Перераспределение калия между внеклеточной и внутриклеточной жидкостями

  • Некроз мышц, миолиз (рабдомиолиз – повреждение скелетных мышц), распад опухоли, тяжелые ожоги
  • Дефицит инсулина (в норме этот гормон ускоряет перемещение калия в клетки)
  • Метаболический ацидоз
  • Гиперосмолярность (гипергликемия – повышение уровня глюкозы в крови, введение маннитола)
  • Лекарства (например, сукцинилхолин (он же дитилин, листенон), бета-блокаторы, дигоксин)
  • Гиперкалиемический периодический паралич (приступы развиваются чаще всего через 30-40 минут после физической нагрузки)

Снижение экскреции калия

  • Повреждение почек (гломерулярная фильтрация

Роль натрия и калия в регуляции бронхиальной проводимости

В последние годы большой интерес исследователей вызывают натрий, калий и магний, принимающие участие в регуляции функций различных клеток, ответственных за развитие воспалительных изменений бронхов и легких.

В эксперименте показано, что контакт с аллергеном сенсибилизированных мышц дыхательных путей приводит к увеличению поступления в них натрия.

При исследовании концентраций одновалентных катионов у больных БА было установлено повышение в эритроцитах уровня Na+.

По мнению авторов, обнаруженный прирост натрия через активацию Na/Ca обмена может приводить к накоплению Са+2 в клетке, что подтверждает кальциевую гипотезу астмы.

Механизмы увеличения концентрации натрия в клетках изучены пока недостаточно.

Читайте также:  Гомеостатические механизмы при изоосмотической гипергидратации. болезнь кушинга. изоосмотическая гипердегидратация.

Активность Na-K АТФазы и Na+/K+/2Cl-котранспорта в лимфоцитах и эритроцитах у больных астмой и хронической обструктивной болезнью легких не отличалась от нормальной.

Недавно в крови больных БА был обнаружен сывороточный фактор, повышающий транспорт натрия в лейкоциты. Скорость поступления Na в клетки коррелировала с величиной гиперреактивности бронхов к метахолину.

У больных хронической обструктивной болезнью легких, осложненной дыхательной недостаточностью и легочным сердцем, обнаружена задержка выделения с мочой натрия и жидкости после введения нагрузочных доз поваренной соли и воды. Обнаруженные нарушения авторы связывают с повышением концентрации в сыворотке крови альдостерона и вазопрессина, а также снижением почечного кровотока и клубочковой фильтрации.

Роль натрия и калия в регуляции бронхиальной проводимости.

Примером заболевания, при котором биохимический дефект обусловлен генетически детерминированным нарушением транспорта ионов в эпителии дыхательных путей, является муковисцидоз.

Считается, что эта болезнь обусловлена мутацией гена, ответственного за синтез специфического белка (transmembrane regulator, CFTR).

Последний регулирует движение Сl- и Na+ через апикальную мембрану эпителиальных клеток.

При снижении синтеза CFTR уменьшается секреция хлора, повышается абсорбция натрия и воды, в результате чего увеличивается вязкость трахеобронхиального секрета и нарушается его клиренс. Это, в свою очередь, способствует развитию инфекционного воспаления дыхательных путей.

Существенную роль в регуляции бронхиальной проходимости, повидимому, играют К+ каналы. Через последние осуществляется выход калия из клеток, приводящий к гиперполяризации их мембран.

К+ каналы обнаружены в гладкомышечных и секреторных клетках, окончаниях блуждающего нерва и эфферентных волокон, а также в эпителии дыхательных путей. Они найдены в Т-лимфоцитах, базофилах и макрофагах, участвующих в развитии воспаления при астме.

Описано более 10 разновидностей калиевых каналов, из которых 4 типа (потенциалзависимые, агонистзависимые, Са-активируемые и АТФ-чувствительные) представлены в бронхах.

Наибольшее значение, по-видимому, имеют Са-активируемые каналы большой проводимости, обнаруженные в дыхательных путях в значительном количестве.

Установлено, что стимуляция выхода К+ из клетки через них является одним из механизмов бронходилятирующего действия агонистов и метилксантинов. Это обусловлено фосфорилированием каналов цАМФ-зависимой протеинкиназой.

Кроме того, адренорецепторы непосредственно активируют их через G-протеин.

В настоящее время известны специфические активаторы АТФ-чувствительных и Са-зависимых калиевых каналов (кромокалим, никорандил, пинацидил).

В экспериментальных и клинических исследованиях установлено, что они оказывают бронхорасширяющее действие и эффективны для предупреждения приступов ночной астмы.

Вероятно, это обусловлено их непосредственным влиянием на гладкие мышцы бронхов, а также способностью уменьшать секрецию АЦХ и нейропептидов. Не исключено, что данные препараты обладают и противовоспалительным действием.

Таким образом, активаторы калиевых каналов представляют собой новый класс противоастматических соединений, терапевтические возможности которых нуждаются в дальнейшем изучении.

В рамках обсуждаемой проблемы особого внимания заслуживают данные о влиянии факторов питания на особенности течения БА. Впервые связь между тяжестью симптомов астмы и потреблением поваренной соли отметили A.V. Stoesser и М.М. Cock в 1938 году.

В последующем у больных БА была обнаружена положительная связь между суточной экскрецией натрия и калия с мочой, с одной стороны, и величиной бронхиальной гиперреактивности бронхов к гистамину и метахолину, с другой.

Пищевые добавки поваренной соли приводили к увеличению частоты обострений астмы, ухудшению бронхиальной проходимости, повышению неспецифической гиперреактивности бронхов и потребности больных в ингаляционных стероидах.

В эпидемиологических исследованиях, выполненных в Великобритании, была обнаружена связь между потреблением хлорида натрия и смертностью от БА. Тем не менее, эти данные не нашли своего подтверждения в работах других авторов.

Таким образом, несмотря на противоречивость полученных данных, можно предположить, что но крайней мере часть больных БА является калий— и соль-чувствительными. Не исключено, что нарушения обмена Na и К+ имеют определенное значение в развитии воспаления дыхательных путей. Вместе с тем, этот вопрос требует дальнейшего изучения.

— Также рекомендуем «Магний в регуляции бронхиальной проходимости.»

Оглавление темы «Регуляция бронхиальной проходимости.»: 1. Клеточные и субклеточные механизмы регуляции пролиферативных процессов при воспалении 2. Превращение при воспалении защитных клеточных механизмов в патологические. 3. Системные медиаториые воздействия на клетку при воспалении. 4. Метаболиты арахидоновой кислоты в патогенезе воспаления легких и бронхов. 5. Легочный контроль за образованием и инактивацией эйкозаноидов. 6. Участие простагландинов в воспалительном процессе легких. 7. Аспириновая бронхиальная астма. Механизмы развития аспириновой астмы. 8. Кальций как регулятор бронхиальной проходимости. 9. Роль натрия и калия в регуляции бронхиальной проводимости. 10. Магний в регуляции бронхиальной проходимости.

Физиологическая роль основных ионов в организме ребенка

В организме взрослого человека содержится 70-100 г натрия, у детей его содержание ниже. Он обнаруживается во всех тканях в виде катионов натрия. Содержание натрия в плазме крови 130-150 ммоль/л (биохимический анализ крови ребенку, детская поликлиника «Маркушка»).

Натрий — главный внеклеточный катион: на его долю приходится более 90 % всех катионов плазмы. Около 85 % ионов натрия представлено в свободной форме и приблизительно 15 % его удерживается белками.

Натрий создает и поддерживает осмотическое давление жидкостей организма (преимущественно внеклеточной), задерживает воду в организме, участвует во всасывании в кишечнике и реабсорбции в почках глюкозы и аминокислот.

Натрий участвует в регуляции кислотно-щелочного состояния организма, является щелочным резервом крови, активатором некоторых ферментов. Содержание натрия в клеточной микросреде определяет величину мембранного потенциала и, соответственно, возбудимость клеток.

Совместно с ионами калия натрий стимулирует АТФазную активность фракций клеточных мембран, стабилизирует симпатический отдел нервной системы, принимает участие в регуляции тонуса сосудов.

Основное количество натрия поступает в организм с поваренной солью, небольшое количество его ребенок потребляет в виде бикарбоната натрия, цитрата, сульфата и глутамата натрия, которые как добавки встречаются в продуктах питания. Суточная потребность ребенка в натрии составляет в среднем 1,5-2,0 ммоль/л.

Основное количество натрия (около 95 %) выводится почками с мочой в виде натриевых солей фосфорной, серной, угольной и других кислот. Натрий выводится также с потом и через кишечник. Дефицит или избыток натрия вызывают серьезные изменения в организме ребенка.

Калий. Внутриклеточный катион

В отличие от натрия является внутриклеточным катионом. У взрослых содержание калия составляет приблизительно 53 ммоль/л и 95 % его обменивается.

Уровень калия в организме ребенка ниже. Основное количество калия (90 %) находится внутри клеток в виде непрочных соединений с белками, углеводами и фосфором.

Часть калия содержится в клетках в ионизованном виде и обеспечивает мембранный потенциал.

Суточная потребность ребенка в калии — 1,5-2,0 ммоль/л. Основным пищевым источником калия являются продукты растительного происхождения. Из организма калий выводится преимущественно почками (80—90 %), в меньшей степени пищеварительным трактом и потовыми железами. Основным регулятором выведения его с мочой является альдостерон.

Калий участвует в ряде жизненно важных физиологических процессов: вместе с натрием создает и поддерживает осмотическое давление жидкостей организма (преимущественно внутриклеточной), участвует в регуляции кислотно-щелочного состояния организма.

Калий — активатор ряда ферментов, вместе с катионом натрия формирует электрохимический потенциал в мембранах клеток.

Уровень калия в клетках и внеклеточной среде играет важнейшую роль в деятельности сердечно-сосудистой, мышечной и нервной систем, в секреторной и моторной функциях пищеварительного тракта, экскреторной функции почек.

Обычно выход калия из клеток зависит от увеличения их биологической активности, распада белка и гликогена, недостатка кислорода. Дефицит и избыток калия вызывают серьезные изменения в организме ребенка.

Кальций. Внутриклеточный и в костной ткани

В различных тканях содержится внутриклеточно и почти исключительно в форме растворимых белковых комплексов. Лишь в костной ткани, включающей до 97 % всех запасов кальция в организме, он находится главным образом в виде нерастворимых внеклеточных включений гидроксиапатита.

Содержание кальция в организме у детей составляет около 200 ммоль/л, у взрослых — 475 ммоль/л. Содержание кальция в крови поддерживается в норме в диапазоне 2,5-2,8 ммоль/л.

Основной источник кальция — продукты питания: молоко и молочные продукты, яйца, бобовые, сухофрукты и др. Для детей грудного возраста основной источник кальция — молоко.У взрослого человека поддерживается нулевой баланс кальция, у детей — положительный.

Кальций участвует в физиологических процессах только в ионизованном виде.

Кальций — необходимый участник процесса мышечного сокращения, важнейший компонент свертывающей системы крови (превращения протромбина в тромбин, фибриногена в фибрин, способствует агрегации тромбоцитов), как кофактор или активатор участвует в работе многих ферментов.

 Кальций входит в состав костей и хрящей в форме апатитов, является стабилизатором клеточных мембран, регулирует возбудимость нервов и мышц. Кальций — внутриклеточный посредник в действии некоторых гормонов на клетку, универсальный триггер многих секреторных процессов.

Ионизация кальция зависит от рН крови. При ацидозе содержание ионизованного кальция повышается, а при алкалозе падает. Алкалоз и снижение уровня кальция ведут к резкому повышению нейромышечной возбудимости.

Магний. Внутриклеточный и в костной ткани

Как и калий, является основным внутриклеточным катионом (его концентрация в клетках значительно выше, чем во внеклеточной среде). Общее количество магния в организме у детей составляет 11 ммоль/л, у взрослых — 14 ммоль/л.

Половина всего магния находится в костях (1/3 этого количества свободно обменивается), 49 % — в клетках мягких тканей, он играет существенную роль во многих ферментативных реакциях, в том числе в активации АТФ-азы.

Уровень магния в крови составляет 0,75-0,9 ммоль/л, при этом более 60 % катиона находится в ионизованном виде.

Суточная потребность в магнии взрослого человека составляет около 300 мг. Овощи с зелеными листьями и фрукты, бобовые и злаки, мясо являются основными пищевыми источниками магния.

Значительное количество эндогенного магния поступает в пищеварительный тракт с пищеварительными секретами. Главным регулятором содержания магния в организме являются почки.

При недостатке его в организме он полностью реабсорбируется почками.

Читайте также:  Конкурентное ингибирование. Неконкурентное обратимое ингибирование.

Магний — структурный элемент костной ткани. Он стабилизирует биологические мембраны, уменьшая их текучесть и проницаемость. Образуя хелаты с нуклеиновыми кислотами, он стабилизирует структуры ДНК, ассоциации субъединиц рибосом, связанные транспортными РНК с рибосомой.

Магний входит в состав более 300 разных ферментных комплексов, обеспечивая их активность. Катион магния уменьшает возбудимость нервно-мышечной системы, сократительную способность миокарда и гладких мышц сосудов, оказывает депрессивное действие на психические функции.

При дефиците магния повышается возбудимость ЦНС, что проявляется слабостью и расстройством психики (спутанность сознания, беспокойство и агрессивность), возникновением судорог.

Повышение уровня магния в плазме (более 1,5 ммоль/л) вызывает тошноту и рвоту. Высокие концентрации магния могут вызвать гипотензию.

Хлор. Основной анион внеклеточной жидкости

Главным анионом внеклеточной жидкости является хлор, в организме он находится преимущественно в ионизованном состоянии (хлорид-анион) в форме солей натрия, калия, кальция, магния и т. д. Общее количество хлора в организме составляет 33 ммоль/кг.

Распределение хлоридов в жидкостях организма определяется распределением ионов натрия. В крови хлориды встречаются главным образом в виде натрия хлорида. Концентрация хлора в плазме крови в норме колеблется от 90 до 105 ммоль/л, 90 % аниона хлора находится во внеклеточной жидкости.

Суточная потребность хлора (2-4 г) полностью покрывается пищевой поваренной солью.

Хлориды участвуют в создании и поддержании осмотического давления жидкостей организма, в синтезе соляной кислоты в желудке. Хлориды также участвуют в генерации электрохимического градиента на плазматических мембранах клеток, являются активаторами ряда ферментов.

Изменение концентрации хлора в крови приводит соответственно к изменению концентрации натрия. Однако иногда изменение концентрации хлора не сопровождается эквивалентными изменениями концентрации натрия. Избыток хлора ведет к ацидозу.

Фосфор. Исключительно большое биологическое значение для растущего организма

Около 70 % фосфора сосредоточено в костной ткани, он входит в состав межклеточной жидкости и активных биохимических соединений каждой клетки организма.

 Фосфаты являются основными анионами внутриклеточной жидкости, где концентрация их выше, чем во внеклеточной среде, в 40 раз.

Содержание неорганического фосфора в крови составляет 0,94-1,60 ммоль/л, у детей первого года жизни — 1,26-2,26 ммоль/л.

Потребность в фосфатах взрослого человека — около 1200 мг/сут. Фосфор в достаточном количестве присутствует в пищевом рационе, так как содержится практически во всех пищевых продуктах и всасывается (около 50 %) в виде неорганических фосфатов.

Фосфаты — необходимый компонент клеточных мембран, играют ключевую роль в метаболических процессах, входя в состав многих коферментов, нуклеиновых кислот и фосфопротеидов.

Фосфат — структурный компонент костей и зубов в виде апатитов, участвует в регуляции концентрации водородных ионов (фосфатная буферная система), важнейший компонент фосфорорганических соединений организма: нуклеотидов, нуклеиновых кислот и фосфопротеидов, фосфолипидов и др. Органические соединения фосфора (АТФ, АДФ) составляют основу энергетического обмена.

Избыток фосфора в организме встречается редко и наблюдается при нарушении функции почек или гипофункции паращитовидных желез. Это приводит к гипокальциемии и нарушению метаболизма костной ткани. Проявлениями недостатка фосфора являются ломкость костей, нарушение диссоциации оксигемоглобина, слабость, миопатия, кардиомиопатия.

Сульфаты, бикарбонаты

Сульфаты в большем количестве содержатся во внутриклеточном пространстве, входят в состав многих биологически активных веществ. Сульфаты необходимы для обезвреживания токсических соединений в печени.

Ион бикарбоната в наибольшем количестве содержится в экстрацеллюлярной жидкости. Ион бикарбоната находится в динамическом равновесии с угольной кислотой и является компонентом основной буферной системы организма.

Влияние натрия и калия о риске гипертензии

Патогенная роль избытка натрия в первичной гипертонии широко признана, но роль дефицита калия обычно игнорировалась или, в лучшем случае, ей присваивался вспомогательный статус.

Последние исследования значительно подтверждают тезис о том, что взаимодействие избытка натрия и дефицита калия в организме, а не какое-либо нарушение само по себе, является критическим экологическим фактором в патогенезе гипертонии.

Чума первичной гипертонии, поражающая современные общества, происходит из-за неправильного взаимодействия внутренних расстройств (почки) и факторов окружающей среды. Множественные доказательства продемонстрировали ключевую роль высокого потребления натрия в патогенезе гипертонии и связанных с ней сердечно-сосудистых заболеваний. риск.

Другой фактор окружающей среды, долгое время связанный с гипертонией, — это дефицит калия. Действительно, убедительные доказательства указывают на его решающий вклад в патогенез заболевания.

Но в отличие от всеобщего признания роли избытка натрия вызывает недоумение тот факт, что влияние дефицита калия обычно игнорировалось или, в лучшем случае, присваивалось вспомогательный статус.

Взвешивая имеющиеся данные, мы недавно предположили, что главным фактором окружающей среды в патогенезе первичной гипертензии и связанном с ней сердечно-сосудистом риске является взаимодействие избытка натрия и дефицита калия в организме.

Это нарушение основных катионов организма, преобладающее при гипертонии. является результатом взаимодействия современной диеты, богатой натрием и бедной калием, и неадаптированными почками, которые по своей природе способны сохранять натрий и выводить калий.

Появились захватывающие новые идеи о множественных взаимодействиях избытка натрия и дефицита калия в мозге и на периферии, которые приводят к повышению системного сосудистого сопротивления и возникновению гипертонии.

Недавно мы представили синтез этих новых идей, которые подтверждают общий приоритет доминирующих в организме катионов в патогенезе заболевания.

Последние исследования значительно подтверждают тезис о том, что взаимодействие избытка натрия и дефицита калия в организме, а не какое-либо нарушение само по себе, является критическим экологическим фактором в патогенезе гипертонии.

Потребление натрия и риск гипертонии

Ни одна из исследованных групп людей не заболевает первичной гипертонией, если потребление натрия достаточно низкое. Фактически, гипертония и возрастное повышение артериального давления практически отсутствуют в группах населения, потребляющих

О рекомендуемом потреблении и обеспеченности населения калием и магнием

Калий — основной внутриклеточный ион. Нормальное функционирование организма зависит от концентрации калия внутри клетки и в межклеточной жидкости.

Адекватное поступление калия с пищей обеспечивает проведение электрического импульса, что необходимо для функционирования сердца и сокращения гладких и поперечно-полосатых мышц, реализации функции мозга и периферической нервной системы; поддержания внутриклеточного осмотического давления; водного баланса.

Калий выступает активатором некоторых ферментов; регулятором активности потенциал-зависимых каналов; необходим для поддержания эндотелиальной функции сосудов; нормального уровня артериального давления (АД); кислотно-щелочного баланса в организме; оказывает влияние на высвобождение гормонов (инсулина) [1].

Магний является восьмым по распространенности элементом земной коры, жизненно важным минералом, вторым преобладающим внутриклеточным электролитом после калия и четвертым по количеству катионов в организме. Его содержание в организме взрослого человека составляет около 1000 ммоль (или 24 г), т. е.

20 ммоль/кг мышечной массы тела. Основным депо магния является костная ткань, где содержится около 50–60% от его общего количества, а в мышцах и других мягких тканях — около 40–50%.

Он необходим для мышечной релаксации, регулирует минерализацию костной ткани, ее равномерный рост, гибкость, прочность и увеличивает репаративный потенциал костей [2].

Приблизительно треть содержащегося в костях магния доступна для поддержания его уровня вне клетки. Внеклеточный магний в организме (менее 2% от всего магния) содержится в плазме крови и эритроцитах [3].

Магний присутствует во всех клетках как кофактор более 300 ферментов, участвующих в метаболизме глюкозы, синтезе белков и нуклеиновых кислот, образовании и переносе энергии, регуляции тонуса гладких мышц сосудов и функции эндотелиальных клеток, как противоион для макроэргических соединений (АТФ) и нуклеиновых кислот, регулирует трансмембранный транспорт, играет роль в поддержании структуры белков, стабилизации ДНК, синтезе и метаболизме катехоламинов (норадреналин), ацетилхолина и других нейромедиаторов, а также нейропептидов в ткани головного мозга [4].

Магний необходим для поддержания гомеостаза кальция, калия и натрия, играет важную роль в метаболизме витамина D и синтезе его гормональной формы, т. к. активность ферментов (гидроксилаз), гидроксилирующих витамин D3, является магний-зависимой [5–7].

Обеспеченность населения калием и магнием

В разных странах среднее потребление калия — менее 3000 мг/сут, а магния — 350 мг/сут, т. е. ниже рекомендуемого ВОЗ [8].

Среднедушевое потребление калия населением Республики Саха (Якутия) составляет 2107 мг, а магния — 224 мг.

В Свердловской области недостаточное потребление магния обнаружено у 55% школьников, у 78,8% работников промышленных предприятий (при дефиците калия у 40,4%) [9, 10].

Среднее потребление калия взрослыми мужчинами в Ставропольском крае близко к норме и больше, чем у женщин [11].

Потребление магния лицами с сердечно-сосудистыми заболеваниями (ССЗ) и ожирением в Московском регионе составило 326,5 мг, калия — 3144 мг [12].

Среди пациентов с метаболическим синдромом и дисбио­зом кишечника содержание магния и калия в рационе у женщин заметно меньше, чем у мужчин (304 мг против 424 мг и 2521 мг против 3280 мг) [13].

Удельный вес магния водного происхождения в рационах населения Приморья составляет 2,0–7,5%. Применение бытовых водоочистителей без блока минерализации увеличивает риск развития недостаточности магния [14].

Дефицит магния встречается в 2,5–15% случаев, трудно диагностируется, т. к. уровень в крови не отражает содержание внутриклеточного магния. Причиной дефицита магния являются снижение его содержания в пищевых растениях, использование рафинированных и подвергнутых глубокой технологической переработке пищевых продуктов, наличие хронических заболеваний, лекарственная терапия [15].

Гипомагниемия диагностируется при концентрации магния в сыворотке крови

Ссылка на основную публикацию
Adblock
detector