Типы взаимодействия вирусов с клетками. Особенности воздействия вирусов на клетки.

Типы взаимодействия вирусов с клетками. Особенности воздействия вирусов на клетки.

Взаимодействие вируса с клетками хозяина может иметь различные проявления. Вирусная инфекция может протекать с разрушением и без разрушения клеток. Не все вирусные инфекции являются продуктивными. Вирусные инфекции, не сопровождающиеся образованием нового потомства вирусов, называются абортивными инфекциями. Непродуктивная инфекция может быть персистентной или латентной инфекцией. В первом случае инфекция продолжается длительное время, во втором она имеет место, но не проявляется, хотя вирусный геном интегрирован в ДНК клетки, или существует в виде эписомы.

  • Персистентная или латентная инфекция могут вести к трансформации клеток.
  • Наиболее распространенными морфологическими изменениями, вызываемыми вирусами, являются: 1) округление и отделение клеток от твердого субстрата; 2) лизис клеток; 3) образование синцития;
  • 4) образование телец-включений.

Типы взаимодействия вирусов с клетками. Особенности воздействия вирусов на клетки.

Цитопатические вирусы убивают инфицированные клетки, что является результатом повреждающего кумулятивного действия многих физиологических функций клетки.

К ним относятся подавление синтеза нуклеиновых кислот и белка, транскрипции РНК, процессинга мРНК, изменение клеточных мембран, токсичность вирусных белков.

Цитопатический эффект вызывают также токсические вирусные белки, которые накапливаются в конечной стадии инфекции.

Цитопатические изменения связаны с изменением клеточных мембран. Клетки могут сливаться и формировать синцитий. Морфологические изменения в клетках, инфицированных некоторыми вирусами, сопровождаются образованием телец-включений, которые обнаруживаются под световым микроскопом после фиксации и окрашивания.

В зависимости от вируса они могут находиться в цитоплазме (оспо-, рео-, парамиксовирусы и вирус бешенства) или ядре (герпес-, адено- и парвовирусы), быть единичными или множественными, большими или мелкими, округлыми или полиморфными, ацидофильными или базофильными.

Вирус чумы плотоядных и цитомегаловирус свиней могут вызывать образование телец-включений в ядре и цитоплазме.

Тельца-включения могут представлять собой скопление вирусных компонентов (тельца Негри при бешенстве) или место синтеза вируса-вироплазма (вирусы оспы). Другие включения представлены кристаллическими агрегатами вирионов (аденовирусные включения в ядре или реовирусные — в цитоплазме). Кроме того, они могут представлять собой результат дегенеративных изменений клеток.

Вирусы, почкующиеся через плазматическую мембрану (тога-, орто- и парамиксовирусы), способны адсорбировать эритроциты на клетках инфицированной культуры (вызывать гемадсорбцию). Гликопротеины некоторых вирусов ответственны за гемагглютинацию in vitro.

Нецитопатические вирусы обычно не убивают клетки, в которых они размножаются. Они часто вызывают персистентную инфекцию с образованием и выделением вирионов, минимально повреждая клеточный метаболизм. Во многих случаях такие клетки продолжают расти и делиться.

Такой способностью обладают некоторые РНК вирусы (пести-, арена-, ретро- и парамиксовирусы).

Интерференция вирусов проявляется, когда инфицированные вирусом клетки становятся устойчивыми к суперинфицированию тем же самым или другим вирусом.

Это явление может быть обусловлено двумя причинами: 1) дефективными интерферирующими частицами (против гомологичного вируса) и 2) интерфероном. Сейчас у человека известно более 20 интерферонов.

Они являются членами большого семейства нормальных регуляторов синтеза клеточных белков (цитокины). Их разделяют на три химически определенных типа а, В и -у.

После синтеза в инфицированных вирусом клетках они выделяются и связываются со специфическими рецепторами плазматической мембраны других клеток. Вероятно, имеется один рецептор для а- и В- интерферона и другой для у-интерферона. Многие индуцированные белки, каждый своим путем, прямо или косвенно подавляют репликацию вируса.

Просмотров 545 Эта страница нарушает авторские права

Типы взаимодействия вирусов с клетками. Особенности воздействия вирусов на клетки.

Особенности биологии вирусов. Типы взаимодействия вируса с клеткой. Стадии репродукции вирусов

Вирусы — мельчайшие микробы, не имеющие клеточного строения, белоксинтезирующей системы, содержащие только ДНК или РНК. Относятся к царству Vira. Являясь облигатными внутриклеточными паразитами, вирусы размножаются в ци­топлазме или ядре клетки.

Они — автономные генетические структуры. Отличаются особым — разобщенным (дисъюнктивным) способом размножения (репродукции): в клетке от­дельно синтезируются нуклеиновые кислоты вирусов и их белки, затем происходит их сборка в вирусные частицы.

Сформированная вирусная частица называется вирионом.

Морфологию и структуру вирусов изучают с помощью элек­тронного микроскопа, так как их размеры малы и сравнимы с толщиной оболочки бактерий.

Форма вирионов может быть раз­личной: палочковидной (вирус табачной мозаики), пулевидной (вирус бешенства), сферической (вирусы полиомиели­та, ВИЧ), в виде сперматозоида (многие бактериофаги). Различают просто устроенные и сложно устроенные вирусы.

Простые, или безоболочечные, вирусы состоят из нуклеиновой кисло­ты и белковой оболочки, называемой капсидом. Капсид состоит из повторяющихся морфологических субъединиц — капсомеров. Нуклеиновая кислота и капсид взаимодействуют друг с другом, образуя нуклеокапсид.

Сложные, или оболочечные, вирусы снаружи капсида окружены липопротеиновой оболочкой (суперкапсидом, или пеплосом). Эта оболоч­ка является производной структурой от мембран вирус-инфицированной клетки. На оболочке вируса расположены гликопротеиновые ши­пы, или шипики (пепломеры). Под оболочкой некоторых вирусов нахо­дится матриксный М-белок.

Тип симметрии. Капсид или нуклеокапсид могут иметь спираль­ный, икосаэдрический (кубический) или слож­ный тип симметрии.

Икосаэдрический тип сим­метрии обусловлен образованием изометричес­ки полого тела из капсида, содержащего вирус­ную нуклеиновую кислоту (например, у вирусов гепатита А, герпеса, полиомиелита).

Спираль­ный тип симметрии обусловлен винтообразной структурой нуклеокапсида (например, у вируса гриппа).

Включения — скопление вирионов или отдельных их компонентов в цитоплазме или ядре клеток, выяв­ляемые под микроскопом при специальном окрашива­нии. Вирус натуральной оспы образует цитоплазмати-ческие включения — тельца Гварниери; вирусы герпеса и аденовирусы — внутриядерные включения.

Размеры вирусов определяют с помощью электронной мик­роскопии, методом ультрафильтрации через фильтры с извест­ным диаметром пор, методом ультрацентрифугирования. Одним из самых мелких вирусов является вирус полиомиелита (около 20 нм), наиболее крупным — натуральной оспы (около 350 нм).

Типы взаимодействия вирусов с клетками. Особенности воздействия вирусов на клетки.

Вирусы имеют уникальный геном, так как содержат либо ДНК, либо РНК. Поэтому различают ДНК-содержащие и РНК-содержащие вирусы. Они обычно гаплоидны, т.е. име­ют один набор генов. Геном вирусов представлен различными видами нуклеиновых кислот: двунитчатыми, однонитчатыми, линейными, кольцевыми, фрагментированными.

Среди РНК-содержащих вирусов различают вирусы с положительным (плюс-нить РНК) геномом. Плюс-нить РНК этих вирусов выполняет наследственную функцию и функцию информационной РНК (иРНК). Имеются также РНК-содержащие вирусы с отрицатель­ным (минус-нить РНК) геномом. Минус-нить РНК этих виру­сов выполняет только наследственную функцию.

Вирусы поражают позвоночных и беспозвоночных животных, а также растения и бактерии.

Являясь основными возбудителя­ми инфекционных заболеваний человека, вирусы также участвуют в процессах канцерогенеза, могут передаваться различными пу­тями, в том числе через плаценту (вирус краснухи, цитомегаловирус и др.

), поражая плод человека. Они могут приводить к постинфекционным осложнениям — развитию миокардитов, пан­креатитов, иммунодефицитов и др.

Кроме обычных вирусов, известны и так называемые нека­нонические вирусы — прионы — белковые инфекционные ча­стицы, являющиеся агентами белковой природы, имеющие вид фибрилл размером 10—20×100—200 нм.

Прионы, по-видимому, являются одновременно индукторами и продуктами автономно­го гена человека или животного и вызывают у них энцефалопа­тии в условиях медленной вирусной инфекции (болезни Крейтц-фельдта—Якоба, куру и др.).

Другими необычными агентами, близкими к вирусам, явля­ются вироиды — небольшие молекулы кольцевой, суперспирализованной РНК, не содержащие белка, вызывающие забо­левания у растений.

Типы взаимодействия вируса с клеткой. Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.

Продуктивный тип — завершается обра­зованием нового поколения вирионов и ги­белью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

  • Абортивный тип — не завершается обра­зованием новых вирионов, поскольку инфек­ционный процесс в клетке прерывается на одном из этапов.
  • Интегративный тип, или вирогения — характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).
  • Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга: адсорбция вируса на клетке; проникновение вируса в клетку; «раздевание» вируса; биосинтез вирусных компонентов в клетке; формирование вирусов; выход вирусов из клетки.
Читайте также:  Гепатит. Тактика при гепатите у больного.

Адсорбция. Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. прикрепления вирусов к поверхности клетки. Это высокоспецифический процесс. Вирус адсорбирует­ся на определенных участках клеточной мембраны — так назы­ваемых рецепторах.

Клеточные рецепторы могут иметь разную хи­мическую природу, представляя собой белки, углеводные ком­поненты белков и липидов, липиды. Число специфических ре­цепторов на поверхности одной клетки колеблется от 104 до 105.

Следовательно, на клетке могут адсорбироваться десятки и даже сотни вирусных частиц.

Проникновение в клетку. Существует два способа проникнове­ния вирусов животных в клетку: виропексис и слияние вирусной оболочки с клеточной мембраной.

При виропексисе после адсорб­ции вирусов происходят инвагинация (впячивание) участка кле­точной мембраны и образование внутриклеточной вакуоли, ко­торая содержит вирусную частицу. Вакуоль с вирусом может транс­портироваться в любом направлении в разные участки цитоплаз­мы или ядро клетки.

Процесс слияния осуществляется одним из поверхностных вирусных белков капсидной или суперкапсидной оболочки. По-видимому, оба механизма проникновения вируса в клетку не исключают, а дополняют друг друга.

«Раздевание». Процесс «раздевания» заключается в удалении защитных вирусных оболочек и освобождении внутреннего ком­понента вируса, способного вызвать инфекционный процесс.

«Раздевание» вирусов происходит постепенно, в несколько этапов, в определенных участках цитоплазмы или ядра клетки, для чего клетка использует набор специальных ферментов.

В случае проникновения вируса путем слияния вирусной оболочки с кле­точной мембраной процесс проникновения вируса в клетку со­четается с первым этапом его «раздевания». Конечными продук­тами «раздевания» являются сердцевина, нуклеокапсид или нук­леиновая кислота вируса.

Биосинтез компонентов вируса. Проникшая в клетку вирусная нуклеиновая кислота несет генетическую информацию, которая успешно конкурирует с генетической информацией клетки. Она дезорганизует работу клеточных систем, подавляет собственный метаболизм клетки и заставляет ее синтезировать новые вирус­ные белки и нуклеиновые кислоты, идущие на построение ви­русного потомства.

Реализация генетической информации вируса осуществляет­ся в соответствии с процес­сами транскрипции, трансляции и репликации.

Формирование (сборка) вирусов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфи­чески «узнавать» друг друга и при достаточной их концентра­ции самопроизвольно соединяются в результате гидрофобных, со­левых и водородных связей.

Существуют следующие общие принципы сборки вирусов, имеющих разную структуру:

1. Формирование вирусов является многоступенчатым процессом с образованием промежуточных форм;

2. Сборка просто устроенных вирусов заключается во взаимодей­ствии молекул вирусных нуклеиновых кислот с капсидными белками и образовании нуклеокапсидов (например, вирусы полиомиелита). У сложно устроенных вирусов сначала форми­руются нуклеокапсиды, с которыми взаимодействуют белки суперкапсидных оболочек (например, вирусы гриппа);

3. Формирование вирусов происходит не во внутриклеточной жидкости, а на ядерных или цитоплазматических мембранах клетки;

4. Сложно организованные вирусы в процессе формирования включают в свой состав компоненты клетки-хозяина (липиды, углеводы).

Выход вирусов из клетки. Различают два основных типа выхо­да вирусного потомства из клетки. Первый тип — взрывной — характеризуется одновременным выходом большого количества вирусов. При этом клетка быстро погибает.

Такой способ выхода характерен для вирусов, не имеющих суперкапсидной оболочки. Второй тип — почкование. Он присущ вирусам, имеющим суперкапсидную оболочку.

На заключительном этапе сборки нук­леокапсиды сложно устроенных вирусов фиксируются на клеточ­ной плазматической мембране, модифицированной вирусными белками, и постепенно выпячивают ее. В результате выпячива­ния образуется «почка», содержащая нуклеокапсид. Затем «поч­ка» отделяется от клетки.

Таким образом, внешняя оболочка этих вирусов формируется в процессе их выхода из клетки. При та­ком механизме клетка может продолжительное время продуци­ровать вирус, сохраняя в той или иной мере свои основные функции.

Время, необходимое для осуществления полного цикла реп­родукции вирусов, варьирует от 5—6 ч (вирусы гриппа, нату­ральной оспы и др.) до нескольких суток (вирусы кори, адено­вирусы и др.). Образовавшиеся вирусы способны инфицировать новые клетки и проходить в них указанный выше цикл репро­дукции.

Структура и химический состав бактериофагов. Взаимодействие фага с бактериальной клеткой. Умеренные и вирулентные бактериофаги. Лизогения. Применение фагов в биотехнологии, микробиологии и медицине.

Бактериофаги — вирусы бактерий, обладающие способностью специфически про­никать в бактериальные клетки, репродуцироваться в них и вы­зывать их растворение (лизис).

В зависимости от формы и структурной организации фаги подразделяют на несколько морфологических типов: нитевидные, мелкие кубические, фаги сперматозоидной формы.

Взаимодействие фага с бактериальной клеткой. По механизму взаимодействия различают вирулентные и умеренные фаги.

Ви­рулентные фаги, проникнув в бактериальную клетку, авто­номно репродуцируются в ней и вызывают лизис бактерий. Про­цесс взаимодействия вирулентного фага с бактерией протекает в виде нескольких стадий и весьма схож с процессом взаимодей­ствия вирусов человека и животных с клеткой хозяина.

Однако для фагов, имеющих хвостовой отросток с сокращающим­ся чехлом, он имеет особенности. Эти фаги адсорбируются на по­верхности бактериальной клетки с помощью фибрилл хвостово­го отростка. В результате активации фагового фермента АТФазы происходит сокращение чехла хвостового отростка и внедрение стержня в клетку.

В процессе «прокалывания» клеточной стенки бактерии принимает участие фермент лизоцим, находящийся на конце хвостового отростка. Вслед за этим ДНК фага, содержаща­яся в головке, проходит через полость хвостового стержня и ак­тивно впрыскивается в цитоплазму клетки.

Остальные структур­ные элементы фага (капсид и отросток) остаются вне клетки.

После биосинтеза фаговых компонентов и их самосборки в бактериальной клетке накапливается до 200 новых фаговых ча­стиц.

Под действием фагового лизоцима и внутриклеточного ос­мотического давления происходит разрушение клеточной стен­ки, выход фагового потомства в окружающую среду и лизис бактерии.

Один литический цикл (от момента адсорбции фагов до их выхода из клетки) продолжается 30—40 мин. Процесс бактериофагии проходит несколько циклов, пока не будут лизированы все чувствительные к данному фагу бактерии.

Взаимодействие фагов с бактериальной клеткой характеризу­ется определенной степенью специфичности. По специфичнос­ти действия различают поливалентные фаги, способные взаимодействовать с родственными видами бактерий, моновалентные фаги, взаимодействующие с бактериями определенного вида, и типовые фаги, взаимодействующие с отдельными вариантами (типами) данного вида бактерий.

Умеренные фаги лизируют не все клетки в популяции, с частью из них они вступают в симбиоз, в результате чего ДНК фага встраивается в хромосому бактерии.

В таком случае гено­мом фага называют профаг.

Профаг, ставший частью хромосо­мы клетки, при ее размножении реплицируется синхронно с геном бактерии, не вызывая ее лизиса, и передается по наслед­ству от клетки к клетке неограниченному числу потомков.

Био­логическое явление симбиоза микробной клетки с умеренным фагом (профагом) называется лизогенией, а культура бакте­рий, содержащая профаг, получила название лизогенной.

Это название отражает способность профага самопроизвольно или под действи­ем ряда физических и химических факторов исключаться из хро­мосомы клетки и переходить в цитоплазму, т. е.

вести себя как вирулентный фаг, лизирующий бактерии.

Читайте также:  Одонтогенные опухоли и опухолеподобные образования. Фиброма полости рта.

Лизогенные культуры по своим основным свойствам не от­личаются от исходных, но они невосприимчивы к повторному заражению гомологичным или близкородственным фагом и, кроме того, приобретают дополнительные свойства, которые находятся под контролем генов профага.

Изменение свойств мик­роорганизмов под влиянием профага получило название фаго­вой конверсии. Последняя имеет место у многих видов мик­роорганизмов и касается различных их свойств: культуральных, биохимических, токсигенных, антигенных, чувствительности к антибиотикам и др.

Кроме того, переходя из интегрированного состояния в вирулентную форму, умеренный фаг может захва­тить часть хромосомы клетки и при лизисе последней перено­сит эту часть хромосомы в другую клетку. Если микробная клет­ка станет лизогенной, она приобретает новые свойства.

Таким образом, умеренные фаги являются мощным фак­тором изменчивости микроорганизмов.

Практическое применение фагов. Бактерио­фаги используют в лабораторной диагнос­тике инфекций при внутривидовой иденти­фикации бактерий, т. е. определении фаговара (фаготипа).

Для этого применяют метод фаготипирования, основанный на строгой специфичности действия фагов: на чашку с плотной питательной средой, засеянной «газоном» чистой культурой возбудителя, на­носят капли различных диагностических типоспецифических фагов.

Фаговар бактерии определяется тем типом фага, ко­торый вызвал ее лизис (образование сте­рильного пятна, «бляшки», или «негативной колонии», фага).

Методику фаготипирова­ния используют для выявления источника и путей распространения инфекции (эпидеми­ологическое маркирование). Выделение бак­терий одного фаговара от разных больных указывает на общий источник их заражения.

По содержанию бактериофагов в объектах окружающей среды (например, в воде) можно судить о присутствии в них соответствующих патогенных бактерий. Подобные исследова­ния проводят при эпидемиологическом ана­лизе вспышек инфекционных болезней.

Фаги применяют также для лечения и про­филактики ряда бактериальных инфекций. Производят брюшнотифозный, сальмонеллезный, дизентерийный, синегнойный, ста­филококковый, стрептококковый фаги и комбинированные препараты (колипротейный, пиобактериофаги и др). Бактериофаги назначают по показаниям перорально, парен­терально или местно в виде жидких, таблети-рованных форм, свечей или аэрозолей.

Бактериофаги широко применяют в генной инженерии и биотехнологии в качестве векторов для получе­ния рекомбинантных ДНК.

Физиология вирусов

Физиология вирусов

Вирусы растут только внутриклеточно, т.е. являются облигатными внутриклеточными паразитами. В клетке они могут находиться в различных состояниях.

Нарушения, вызываемые вирусами, весьма разнообразны: от продуктивной инфекции с образованием вирусного потомства и гибелью клетки до продолжительного взаимодействия вируса с клеткой в виде латентной инфекции или злокачественной трансформации клетки.

Инфицирование клетки вирусом может иметь следующие последствия:

— разрушение клетки (некроз)в результате цитоцидной инфекции, т.е. репродукция вируса приводит к цитоцидному действию (в культуре клеток происходит цитопатический эффект — клетки округляются, отделяются от соседних клеток, образуются многоядерные гигантские клетки, вакуоли и включения);

  • — разрушение клетки (апоптоз)в результате инициации вирусом програмированной клеточной гибели, при этом вирусный репликативный цикл часто прерывается;
  • — разрушение клетки в итоге не самим вирусом, а иммунными реакциями организма;
  • — вирус находится внутри клетки, но не разрушает ее (латентная инфекция);
  • — вирус трансформирует клетку организма в раковую клетку.
  • Хорошо изучены три основных типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.

Продуктивный тип взаимодействия завершается воспроизводством вирусного потомства — многочисленных вирионов и гибелью зараженных клеток (цитоцидное действие). Некоторые вирусы выходят из клеток, не разрушая их (нецитоцидное действие).

  1. Абортивный тип взаимодействия не завершается образованием новых вирионов, поскольку инфекционный процесс, в клетке прерывается на одном из этапов.
  2. Интегративный тип взаимодействия, или вирогения, характеризуется встраиванием (интеграцией), вирусной ДНК в виде провируса в хромосому клетки и их совместной репликацией.
  3. Продуктивный тип взаимодействия вируса с клеткой

Продуктивный тип взаимодействия вируса с клеткой, т.е. репродукция вируса (от лат. re — повторение, productio — производство), проходит несколько стадий:

  • 1) адсорбция вириона на клеточной мембране;
  • 2) проникновение вириона в клетку, «раздевание» и высвобождение вирусного генома (депротеинизация вируса);
  • 3) синтез вирусных компонентов;
  • 4) сборка реплицированной нуклеиновой кислоты и новых капсидных белков;
  • 5) выход вирусного потомства из клетки.

Адсорбция вириона, т.е. его прикрепление к клеточной мембране, — первая стадия репродукции вирусов.

Она происходит в результате взаимодействия поверхностных молекул (белковых лигандов) вируса с мембранными рецепторами клеток вирусов.

Белки поверхности вирусов, например гликопротеины липопротеиновой оболочки, узнающие специфические клеточные рецепторы и взаимодействующие с ними, называются прикрепительными белками.

Типы взаимодействия вируса с клеткой. Продуктивная вирусная инфекция

Вирусы, их особенности, строение вириона. Принципы классификации вирусов.

Вирусы – мельчайшие микробы, относящиеся к царству Virae (лат. virus – яд).

Вирусы не имеют клеточного строения, состоят из ДНК- или РНК-генома, окружённого белками.

Являясь автономными генетическими структурами и облигатными внутриклеточными паразитами, вирусы размножаются в цитоплазме или ядре клеток и не имеют собственной метаболической системы.

Для них характерен разобщённый (дизъюнктивный) способ размножения: в разных частях вирусинфицированной клетки происходит образование вирусных компонентов, а затем их сборка.Зрелая вирусная частица называется вирионом.

Размер вириона вируса чрезвычайно мал и лежит в диапозоне 15-400 нм, поэтому вирусы возможно изучать только с помощью электронной микроскопии.

Вирусы содержат только какую-то одну нуклеиновую кислоту: РНК или ДНК. Таким образом, различают ДНК-содержащие и РНК-содержащие вирусы. Геном вирусов достаточно скромный: в среднем от 5 до 200 генов.

РНК-содержащие вирусы имеют полярную нуклеиновую кислоту. Различают плюс-нить РНК (позитивная нить) и минус-нить РНК (негативная нить).

Позитивная РНК является одновременно источником наследственного материала, с другой стороны, может выступать в качестве мРНК, т.е. транслироваться с образованием белковых молекул.

Негативная нить выступает только в качестве геномной нуклеиновой кислоты, для синтеза белка нужно синтезировать комплементарную ей нить с помощью РНК-зависимой-РНК-полимеразы.

Различают простые и сложные вирусы.

Простые вирусы содержат только нуклеиновую кислоту, связанную с белковой структурой, называемой капсидом. Некоторые простые вирусы во внешней среде могут кристаллизоваться. Такие вирусы разрушают инфицированную клетку (лизис).

Сложные вирусы содержат кнаружи от капсида двойную липопротеиновую оболочку, которая сформировалась при слиянии вируса с ЦПМ клетки хозяина, мембраной ЭПС, ядра и т.д.

Эту оболочку иначе называют суперкапсидом, на котором расположены гликопротеиновые шипики. Обработка вирусов эфиром приводит к растворению этих шипиков, и вирус инактивируется.

Под оболочкой некоторых вирусов находится матриксный белок (М-белок).

  • Нуклеиновую кислоту вирусов называют сердцевиной (в некоторых случаях она связана с гистоноподобными белками).
  • Формы вириона по типу симметрии капсида:
  • — спиральный;
  • — икосаэдрический;
  • — продолговатый;
  • — комплексный
  • Спиральный капсид – отдельные белковые фрагменты капсида – капсомеры – уложены спирально по ходу нуклеиновой кислоты.
  • Икосаэдрический капсид – капсомеры формируют геометрически правильное тело, внутри которого расположена нуклеиновая кислота.
  • Продолговатый капсид – капсомеры образуют вытянутые вдоль продольной оси структуры (это бактериофаги).
  • Комплексный капсид – имеет смешанный характер, сочетает черты спирального и икосаэдрического капсида.
  • Классификация вирусов.
  • Лауреат Нобелевской премии Балтимор предложил схему классификации всех вирусов на основе строения их генетического материала, поместив вирусы в 7 групп.
Группа Семейство Представители
ДНК (двунитевые)-вирусы Поксвирусы (Poxviridae) Вирус натуральной оспы
Герпесвирусы (Herpesviridae) Вирусы герпеса, Эпштейна-Барр, ветряной оспы
Аденовирусы (Adenoviridae) Аденовирусы человека
Папилломавирусы (Papillomaviridae) Вирус папилломы человека
Полиомавирусы (Polyomaviridae) Полиомавирусы человека
ДНК (однонитевые)-вирусы Парвовирусы (Parvoviridae) Парвовирус человека
РНК(двунитевые)-вирусы Реовирусы (Reoviridae) Вирус Кемерово, колорадской клещевой лихорадки, ротавирусы человека
РНК (плюс-однонитевые)-вирусы Пикорнавирусы (Picornaviridae) Вирус полиомиелита, Коксаки А и В, ECHO, вирус гепатита А, риновирусы человека
Калицивирусы (Caliciviridae) Вирусы гастроэнтерита группы Норволк
Гепевирусы (Hepeviridae) Вирус гепатита E
Коронавирусы (Coronaviridae) Коронавирусы человека, торовирусы
Флавивирусы (Flaviviridae) Вирус жёлтой лихорадки, клещевого энцефалита, вирус гепатита C
Тогавирусы (Togaviridae) Вирус краснухи
РНК (минус-однонитевые)-вирусы Борнавирусы (Bornaviridae) Вирус болезни Борна
Филовирусы (Filoviridae) Вирус Эбола
Парамиксовирусы (Paramyxoviridae) Вирусы кори, парагриппа, эпидемического паротита
Рабдовирусы (Rhabdoviridae) Вирус бешенства, везикулярного стоматита
Ортомиксовирусы (Orthomyxoviridae) Вирус гриппа
Буньявирусы (Bunyviridae) Вирус геморрагической лихорадки, вирус гепатита D
РНК-вирусы (обратнотранскрибирующиеся) Ретровирусы (Retroviridae) ВИЧ
ДНК-вирусы (обратнотранскрибирующиеся) Гепаднавирусы (Hepadnaviridae) Вирус гепатита B
Читайте также:  Прозерин таблетки 15 мг, уколы в ампулах для инъекций в растворе - инструкция по применению

Типы взаимодействия вируса с клеткой. Продуктивная вирусная инфекция.

  1. Вирусы являются облигатными внутриклеточными паразитами, поэтому все изменения, происходящие с клеткой, обусловлены именно присутствием вируса в клетке.
  2. С клеткой могут происходить следующие изменения:
  3. 1. Некроз клетки;
  4. 2. Апоптоз клетки;
  5. 3. Элиминация клетки T-киллером, NK-клеткой;
  6. 4. Вирус находится внутри клетки, но не разрушает её (латентная инфекция);

5. Вирус трансформирует клетку в опухолевую.

  • Различают 3 основных типа взаимодействия вируса с клеткой:
  • — продуктивный тип;
  • — абортивный тип;
  • — интегративный тип
  • Продуктивный тип.
  • Осуществляется в несколько стадий:
  • 1. Адсорбция вириона на клеточной мембране;
  • 2. Проникновение вириона в клетку, «раздевание» и высвобождение вирусного генома (депротеинизация);
  • 3. Синтез вирусных компонентов;
  • 4. Сборка новых вирионов;
  • 5. Выход потомства из клетки

Адсорбция вириона осуществляется благодаря взаимодействию поверхностных белковых структур вируса и рецепторов клеток. Вирусы обладают тропизмом, т.е. прикрепляются к строго определённым клеткам.

Проникновение вириона в клетку возможно в результате рецепторопосредованного эндоцитоза или при слиянии мембраны клетки с оболочкой вируса.

В случае рецепторопосредованного проникновения в месте контакта вируса с клеткой образуется впячивание, и вирус проникает в клетку в составе мембранного пузырька.

Сложные вирусы проникают в клетку путём слияния мембраны клетки-хозяина и липидной оболочки. Данный процесс возможен при наличии белка слияния (F-белка), который обнаруживается в составе суперкапсида.

При таком пути транспорта вируса внутри клетки оказывается капсид, а суперкапсид встраивается в плазматическую мембрану, поэтому данная клетка приобретает способность сливаться с другими клетками, передавая им вирус.

В клетке также происходит «раздевание» вируса, когда нуклеиновая кислота освобождается от многих белков (депротеинизация). Этот процесс специфичен для разных вирусов: у пикорнавирусов осуществляется в цитоплазме при слиянии эндосомы с лизосомами; для герпесвирусов – околоядерное пространство; у аденовирусов – сначала цитоплазматические структуры, а затем ядро клетки.

  1. Синтез вирусных компонентов – это синтез вирусных белков, которые можно поделить на 2 большие группы:
  2. — неструктурные белки, которые по большей части являются ферментами, участвующими в процессе репродукции;
  3. — структурные белки вируса: белки, связанные с нуклеиновой кислотой, белки капсида, а также суперкапсидные белки.
  4. Синтез белка состоит из последовательно протекающих процессов транскрипции и трансляции, в общих чертах не отличаясь от соответствующих процессов у про- и эукариот.
  5. Последовательность основных событий у разных групп вирусов следующая:

— ДНК-содержащие вирусы имеют ДНК-геном, который транскрибируется с участием РНК-полимеразы.

Но для тех вирусов, у которых этот процесс протекает в цитоплазме клетки, характерно наличие собственной вирусной РНК-полимеразы, а если транскрипция осуществляется в ядре (аденовирусы, вирус герпеса), то для неё используются содержащиеся в ядерном соке РНК-полимераза II или III типа.

После образования мРНК осуществляется её трансляция (при использовании рибосом клетки) с образованием вирусных белков. Таким образом, передача генетической информации происходит в ряду ДНК – мРНК – белок;

— плюс-нитевые РНК-содержащие вирусы имеют нить РНК, которая выступает в качестве мРНК, поэтому транскрипция не требуется, белок синтезируется с данной РНК;

— минус-нитевые РНК и двунитевые реовирусы имеют геном, который играет роль матрицы для синтеза РНК при участии РНК-полимеразы, поэтому в ряду синтеза белка имеем следующие компоненты: геномная РНК вируса – мРНК – вирусные белки;

— ретровирусы (ВИЧ, онкогенные ретровирусы) имеют геном, состоящий из двух комплементарных цепей РНК.

У этих вирусов имеется фермент обратная транскриптаза (ревертаза), которая синтезирует на базе одной из нитей РНК нить ДНК, которая комплементарно достраивает себе вторую.

Полученная двунитевая ДНК интегрирует в клеточный геном, в составе которого транскрибируется на мРНК с участием ДНК-зависимой-РНК-полимеразы. Трансляция этой мРНК приводит к накоплению вирусных белков.

Формирование вирионов – белки и нуклеиновые кислоты вируса синтезируются в разных частях клетки, поэтому такой способ репродукции вируса получил название дизъюнктивный.  

Синтезированные компоненты вирусной частицы доставляются в определённые места цитоплазмы или ядра, где и происходит сборка при участии ионных, водородных, гидрофобных связей, а также за счёт комплементарного стерического соответствия молекул.

Формирование вириона – многоступенчатый этап, однако у простых вирусов протекающий быстрее: связывание белков капсомеров нуклеиновыми кислотами с образованием нуклеокапсида.

У сложных вирусов формируется также модифицированная липидная мембрана – аналог будущей липидной оболочки вируса.

Кроме того, в состав суперкапсида могут включаться гликопротеины, а под суперкапсидом в некоторых случаях (Ортомиксовирусы) обнаруживают матриксный М-белок, который, будучи гидрофобным, выступает посредником между суперкапсидом и нуклеокапсидом.

Выход вирусов из клетки – в инфицированной клетке образуется 100-1000 зрелых вирионов, которые могут выходить из клетки следующими путями:

— взрывной путь – характерен для простых (безоболочечных) вирусов, когда из клетки выходит одновременно много вирионов, а клетка погибает (происходит её лизис);

— почкование (экзоцитоз) – характерно для сложных (оболочечных) вирусов, причём сначала образующийся нуклеокапсид транспортируется к тому или иному участку ЦПМ клетки-хозяина, затем образуется выпячивание (почка), и вирус отделяется от клетки-хозяина, имея в своём составе липидную мембрану инфицированной клетки. Таким образом из клетки может выходить большое количество вирусов, но целостность клетки будет сохраняться.

Абортивный тип.

При таком типе взаимодействия попадание вируса в клетку не приведёт к образованию вирусного потомства. Связано это с тем, что вирус является дефектным.

Дефектность вирусов можно расценить по-разному.

С одной стороны, есть вирусы, которые сами по себе не могут реализовать продуктивную инфекцию, им нужен вирус-помощник (вирус гепатита D репродуцируется только в присутствии вируса гепатита B), с другой стороны, есть вирусные частицы, имеющие неполноценный геном, которые подавляют репродукцию других вирусов – дефектные интерферирующие частицы (ДИ-частицы).

Интегративный тип.

Этот тип взаимодействия заключается во встраивании генома вируса в геном клетки-хозяина.

Такой тип взаимодействия характерен для бактериофагов, ВИЧ, онкогенных вирусов, вируса гепатита B.

Геном вируса встраивается в виде двунитевой молекулы ДНК, замкнутой в кольцо, которая интегрируется в геном клетки-хозяина в области гомологии нуклеотидных последовательностей.

Встроенная в геном ДНК вируса называется провирусом. Он реплицируется в составе генома клетки, передаваясь в ряду дочерних клеток, и это называется вирогенией.

Присутствие чужеродного генома нередко может придать клетки определённые новые свойства, причём часто это опухолевая трансформация.

Длительное сосуществование генома вируса и клетки-хозяина – основа для развития длительно текущих вирусных инфекций (латентные инфекции).

Ссылка на основную публикацию
Adblock
detector