Специфическая противовирусная защита. Иммуноглобулины.

После прививок от COVID-19 многие пациенты сдают анализ на антитела, вырабатываемые в организме под воздействием вакцины. Тем не менее вакцина также стимулирует другой тип иммунитета, называемый клеточным. 

Разберемся что такое клеточный и гуморальный иммунитет? Как проверить уровень антител? Означает ли отсутствие антител отсутствие иммунитета?

Что такое антитела к COVID-19?

Антитело (иммуноглобулин) – это белок, продуцируемый В-лимфоцитами и плазматическими клетками, стимулированными антигеном, то есть в случае заболевания COVID-19 – белком SARS-CoV-2 (в основном шиповым белком). Антитела создаются для нейтрализации патогенов, против которых они были произведены. 

Антитела могут образовываться после контакта с возбудителем (вирусом или бактерией) или в результате введения вакцины против заболевания. Имеющиеся в настоящее время вакцины против COVID-19 стимулируют выработку в организме пайкового белка – антигена, стимулирующего выработку антител и иммунных клеток.

Антитела состоят из четырех пептидных цепей – двух легких и двух тяжелых, соединенных между собой специальными связями. Антитела в организме можно разделить на несколько классов: IgA, IgM, IgG, IgE, IgD. Принадлежность к классу зависит от структуры тяжелой цепи антитела.

Виды антител к COVID-19

В настоящее время серология фокусируется в первую очередь на определении антител классов IgG и IgM, направленных против SARS-CoV-2, хотя определяются и антитела класса IgA. Наиболее важные антитела к SARS-CoV-2 образуются в ответ на антигены – спайк-белок (S) и нуклеокапсидный белок вируса SARS-CoV-2.

  • Спайк-белок располагается на поверхности вируса и образует его корону. Этот же белок позволяет вирусу проникать в клетки организма. 
  • Нуклеокапсидный белок (N) участвует, среди прочего, в репликации (дупликации) генетического материала вируса.

Примерно у 90% больных, перенесших инфекцию, вырабатываются антитела. Но можно заболеть COVID-19 и не иметь антител.

Как работают антитела класса IgG?

Антитела класса IgG обладают высоким сродством к антигену (и, следовательно, к патогену), и более того, они близки к антигену таким образом, что он доступен питающимся клеткам, которые его разрушают (фагоцитоз). Этот класс антител играет важную роль в иммунном ответе против микробов после защитной вакцинации. 

Специфическая противовирусная защита. Иммуноглобулины.

Антитела IgG сохраняются в организме дольше, чем антитела IgM, и являются основой для защиты от воздействия новой инфекции. При наличии антител IgG и отсутствии антител класса IgM можно с большой вероятностью предположить, что у пациента уже была инфекция COVID-19.

Как работают антитела класса IgM?

Наличие высокого титра антител класса IgM к COVID-19 свидетельствует о том, что в организме есть или недавно была инфекция. 

В случае COVID-19 антитела класса IgM и класса IgG обычно появлялись в сыворотке одновременно, уже на ранней стадии заражения, и ровно через 2-3 недели с момента контакта с вирусом. Стоит отметить, что руководящие принципы не рекомендуют определять только антитела класса IgM.

Как проверить антитела к SARS-CoV-2?

Определить количественно антитела к вирусу SARS-CoV-2, можно сдав на анализ образец венозной крови. Количественное определение говорит о точном уровне антител в крови.

При желании определить антитела после болезни или прививки, лучше всего делать это не ранее, чем через 2-3 недели после заболевания или второй дозы вакцины.

Предварительное определение может еще не обнаружить искомые антитела.

Определение антител не позволяет сделать вывод о текущей инфекции вирусом SARS-CoV-2. Поэтому анализ не следует делать при наличии симптомов COVID-19. Для подтверждения инфекции необходимо обнаружить генетический материал вируса в мазке из носа или горла больного. 

С другой стороны, определение антител может быть вспомогательным методом, например, для определения того, можно ли считать тревожные симптомы осложнениями болезни COVID-19.

Что такое клеточный иммунитет?

Клеточный иммунитет, как и гуморальный иммунитет (то есть зависимый от антител) – специфический иммунитет, направленный против специфического антигена. Специфический иммунный ответ возникает в результате контакта с этим антигеном. К вирусу SARS-CoV-2 – это белок S. 

В отличие от специфического иммунного ответа, неспецифический иммунитет защищает организм сразу от нескольких различных антигенов.

Клеточный иммунитет зависит от Т-лимфоцитов (один из видов лейкоцитов). Т-клетки неоднородная группа клеток, делящаяся на:

  • Цитотоксические лимфоциты. Эти лимфоциты отвечают за разрушение клеток, инфицированных чужеродным антигеном путем апоптоза – запрограммированная гибель клеток;
  • Вспомогательные лимфоциты. Способны вырабатывать специальные интерлейкины, дающие возможность другим клеткам иммунной системы, в том числе цитотоксическим лимфоцитам, начать борьбу с антигеном.

COVID-19 и клетки иммунной памяти

После COVID-19 и после вакцинации в организме образуются клетки памяти, относящиеся к В- и Т-лимфоцитам. Благодаря этой информации после повторного контакта с возбудителем организм сможет за короткое время вырабатывать защитные антитела против вируса, что значительно улучшает иммунный ответ организма и дает шанс на более эффективную борьбу с инфекцией. 

В свою очередь, клетки памяти, принадлежащие Т-лимфоцитам, после повторного контакта с вирусом смогут быстрее его нейтрализовать и уничтожить уже инфицированные клетки, что ограничивает распространение вируса в организме.

Можно ли не иметь антител, а иметь клеточный иммунитет?

Отсутствие антител, направленных против SARS-CoV-2, не означает, что в организме не выработается какой-либо иммунитет. Антитела – элемент гуморального иммунитета, но есть ещё и клеточный иммунитет, и его нельзя недооценивать.

Следует отметить, что до сих пор неизвестно, как долго антитела сохраняются в крови, однако некоторые научные отчеты показывают, что они обнаруживаются даже через 5 месяцев после начала заболевания. 

Наличие антител не обеспечивает 100% защиты от повторного заболевания, но, безусловно, значительно снижает его вероятность. Поэтому, несмотря на наличие антител, необходимо следовать действующим эпидемиологическим рекомендациям.

Нужно ли пациентам, у которых не выработались антитела, вакцинироваться 3-й дозой вакцины от COVID-19?

Обязательных рекомендаций по использованию третьей дозы вакцины от COVID-19 пока нет. Так как вакцина от COVID-19 или болезнь также оставляет клеточный иммунитет, антитела не рассматриваются как фактор, четко определяющий наличие или отсутствие иммунитета. Но новые данные об иммунных механизмах, связанных с COVID-19,  исключают такой сценарий в будущем.

Лекция 2 факторы резистентности и иммунологические механизмы защиты слизистой оболочки — научное обозрение. реферативный журнал (научный журнал)

1

Чеснокова Н.П. 1

Понукалина Е.В. 1

Полутова Н.В. 1

Бизенкова М.Н. 1
1 ГБОУ ВПО «Саратовский Государственный медицинский университет им. В.И. Разумовского Минздрава России»

1. Зайчик А.Ш. Патологическая физиология. Том 2. Патохимия [Текст]: учеб. / А.Ш. Зайчик, Л.П. Чурилов. – 3-е изд. – СПб.:ЭЛБИ-СПб, 2007. – 688 с.
2.

Инфекционный процесс / Под ред. Н.П. Чесноковой, А.В. Михайлова. – М.: «Академия естествознания», 2006. – 434 с.
3. Лекция 4. Особенности структуры, функции и метаболизма В- и Т- систем лимфоцитов / Н.П. Чеснокова, Е.В. Понукалина, Т.Н. Жевак [и др.] // Международный журнал фундаментальных и прикладных исследований. 2015. № 4. – С. 293 -297.
4.

Ортопедическая стоматология [Текст]: учеб. / под общ. ред. В.Н. Трезубова. – 8-е изд., перераб. и доп. – СПб.: Фолиант, 2014. – 592 с.
5. Патологическая физиология [Текст]: учеб. / под общ. ред. В.В.Моррисона, Н.П. Чесноковой. – 4-е изд. – Саратов: Изд-во Сарат. гос. мед. ун-та, 2009. – 679 с.
6. Терапевтическая стоматология [Текст]: учеб. / под общ. ред. Е.В.

Боровского. – М.: ООО «Медицинское информационное агентство», 2011. – 840 с.
7. Типовые реакции иммунной системы на действие антигенов-аллергенов [Текст]: учеб. пособие / под ред. Н.П. Чесноковой. – Саратов: Изд-во Сарат. гос. мед. ун-та, 20014. – 156 с.
8. Физиология человека // Под ред. акад. РАМН Б.И. Ткаченко. – М.: ГЭОТАР–Медиа,2009.- 496 с.
9.

Нормальная физиология // Под ред. В.М. Смирнова. – 3–е издание.,перераб. и доп. – М.: издательский центр «Академия», 2010. – 480 с.
10 Цитокины: биологическая роль в развитии реакций адаптации и повреждения в условиях нормы и патологии различного генеза [Текст]: монография / под общ. ред. В.М. Попкова, Н.П. Чесноковой. – Саратов: Изд-во Сарат. гос. мед.

ун-та, 2016. – 448 с.

Местный иммунитет слизистой оболочки рта

Резистентность слизистой оболочки рта обеспечивается комплексом клеточных и гуморальных механизмов защиты. Как известно, в полости рта обитает около 200 представителей различных микроорганизмов, среди которых есть и патогенные. В микробных биоптатах преобладает грамположительная микрофлора.

Читайте также:  Предпозвоночная пластинка фасции шеи. пятая фасция по шевкуненко. клетчаточные пространства шеи. клетчатка шеи. поднижнечелюстное клетчаточное пространство.

При электронно-микроскопическом изучении микробной бляшки выявлены следующие изменения ее состава в различные сроки формирования: в однодневных микробных бляшках преобладают кокки, в трехдневных – кокки и палочки, в пятидневных наряду с кокками и палочками появляются подвижные формы – спирохеты, образуются микробные комплексы.

Максимальная концентрация микроорганизмов в 1 мл слюны здорового человека соответствует 107 для факультативных видов и 108 для анаэробов. Различают постоянную – резидентную флору ротовой области и случайную – транзиторную. В состав постоянной флоры входят бактерии, грибы, спирохеты, простейшие и вирусы, преобладают стрептококки альфа- и гамма-типов, вейлонеллы и актиномицеты.

Непостоянная флора включает в себя микроорганизмы, обитающие в дистальном отделе тонкого и толстого кишечника, в частности бактерии группы кишечной палочки, энтерококки, бактерии протея, клостридии и др. Обильному размножению микрофлоры способствуют оптимальная температура полости рта, обилие влаги, органических веществ, близкая к нейтральной реакция среды.

Однако бесконечного размножения микроорганизмов не происходит в связи с наличием в ротовой полости разнообразных механизмов неспецифической резистентности и специфической иммунологической защиты [1, 2, 3, 8, 10].

  • Говоря о неспецифических механизмах резистентности, необходимо отметить роль слизи, которая препятствует прикреплению бактерий к эпителиальным клеткам, способствует удалению возбудителей из ротовой полости с помощью движения ресничек эпителия в процессе кашля, чихания [1, 2, 3, 5, 7, 8, 10].
  • Количество микроорганизмов ротовой полости зависит и от интенсивности слущивания эпителия слизистой С адсорбированными на нем микробными клетками, смывания и проглатывания микробов со слюной, поэтому ограничение слюноотделения, нарушения жевания и глотания способствуют увеличению микрофлоры ротовой полости.
  • Важная роль в регуляции микрофлоры рта отводится микробному антагонизму: зеленящие и негемолитические стрептококки, превалирующие в полости рта, являются основными антагонистами случайной микрофлоры [1, 2, 3, 8, 10].
  • Мощными факторами селекции микроорганизмов являются pH среды, температура ротовой полости, наличие питательных веществ.

Однако важнейшими факторами защиты ротовой полости от бактериальной микрофлоры являются такие бактерицидные компоненты слюны, как лизоцим, лактоферрин, миелопероксидаза, опсонины, лейкины, иммуноглобулины. К клеточным факторам защиты полости рта относятся нейтрофилы и лимфоциты, а также моноциты.

Установлено, что в полость рта эмигрирует ежеминутно до 250 000 лейкоцитов в основном через зубодесневую борозду. При этом до 97 %: клеток приходится на нейтрофилы, 1–2 % – на лимфоциты, 2–3 % – на моноциты. Такое же соотношение лейкоцитов имеет место в десневой жидкости пародонтальных карманов.

Основной, но далеко не единственной функцией нейтрофилов и макрофагов является фагоцитоз. В первичных азурофильных гранулах нейтрофилов содержатся лизосомальные гидролитические ферменты, миелопероксидаза, лизоцим, катионные белки.

Вторичные гранулы зрелых нейтрофилов включают лактоферрин, лизоцим, фосфатазу, третичные гранулы содержат кислые гидролазы.

Помимо указанных соединений на фоне антигенной стимуляции нейтрофилы могут освобождать в окружающую среду вновь синтезированные биологически активные соединения – эндопирогены, индуцирующие развитие лихорадки, а также свободные радикалы с выраженной бактерицидной активностью. Нейтрофилы обеспечивают в основном защиту от пиогенных бактерий [1, 2, 3, 5, 7, 8, 10].

Макрофаги ротовой полости также обеспечивают антибактериальную ‘защиту в основном за счет фагоцитоза, а также, подобно макрофагам других органов и тканей, обладают способностью продуцировать группу биологически активных соединений, известных под названием монокины.

Группа монокинов включает в себя провоспалительные цитокины интерлейкин-1, интерлейкин-6, интерлейкин-8, колониестимулирующие факторы, С1 С2, С3, С4, С5 – компоненты комплемента, интерферон, а также лизоцим, активатор плазминогена, а2-макроглобулин, фактор лизиса опухолевых клеток, пропердин, фактор активации фибробластов, простагландины Е2, тромбоксан – А2, лейкотриены. На поверхности макрофагов и нейтрофилов имеются рецепторы к Fc-фрагменту иммуноглобулинов и к С3, с помощью которых осуществляется прикрепление опсонизированных микробов к поверхности фагоцита. В развитии реакций фагоцитоза в полости рта, так же как и в других органах и тканях, различают следующие стадии: направленный хемотаксис фагоцита к фагоцитируемому объекту, затем – прикрепление и окружение объекта фагоцитом, опсонизация и распознавание, внутриклеточное поглощение, киллинг микробов, заканчивающийся деструкцией или полным перевариванием объекта. В соответствии с этим фагоцитоз может носить завершенный или незавершенный характер [1, 2, 3, 4, 6, 9, 10].

Лизоцим

Характеризуя факторы неспецифической резистентности ротовой полости, следует отметить важную роль лизоцима, обладающего бактериолитическим и бактериостатическим действием, особенно на грамположительные бактерии.

Лизоцим катализирует гидролиз гликозаминогликанов, растворяет клеточную оболочку и вызывает распад всей бактериальной клетки.

Лизоцим оказывает менее выраженное действие на грамотрицательные микроорганизмы, поскольку пептидогликаны их клеточной оболочки находятся под слоем липопротеинов и липополисахаридов и недоступны гидролизующему воздействию лизоцима.

Лизоцим оказывает также стимулирующее воздействие на В- и Т-системы лимфоцитов, активирует систему комплемента, обладает способностью связывать и инактивировать гистамин, серотонин, стимулирует различные стадии фагоцитоза, регенераторные процессы в тканях.

При снижении способности лейкоцитов человека синтезировать лизоцим резко подавляются многие неспецифические механизмы резистентности слизистой ротовой полости к патогенному воздействию различных возбудителей. Препараты лизоцима широко применяют в клинике в ингаляциях, внутримышечно для лечения инфекционных заболеваний дыхательной системы, тканей пародонта с затяжным течением [1, 2, 3, 4, 6, 9, 10].

Пропердин – высокомолекулярный белок, обнаруживаемый во всех трех фракциях сыворотки крови, обеспечивает бактерицидное, гемолитическое, вируснейтрализующее действие в сочетании с ионами магния, третьим компонентом комплемента за счет образования комплекса с полисахаридными структурами инфекционного возбудителя [1, 2, 3, 8, 10].

Лейкины – термостабильные бактерицидные факторы, образуемые при распаде лейкоцитов, способные инактивировать стафилококки и другие грамположительные микробы. Аналогичным свойством обладают плакины, освобождаемые при распаде тромбоцитов [4, 6, 8, 9, 10].

Бета-лизины – термостабильные гуморальные факторы резистентности против анаэробов и некоторых аэробов.

Интерфероны – термостабильные низкомолекулярные белки, продуцируемые лимфоцитами и моноцитами с выраженной противовирусной активностью.

Интерферон участвует в распознавании антигена, усиливает функции нейтрофильных лейкоцитов, повышает фагоцитарную активность макрофагов, активность лизоцима, модулирует функции В- и Т-лимфоцитов.

Таким образом, интерфероны являются факторами неспецифической противовирусной защиты слизистой оболочки рта, интенсивно образуясь под влиянием одной разновидности вирусов макрофагами и лимфоцитами, они подавляют репродукцию различных вирусов [ 2, 3].

Комплемент – система термолабильных ферментных белков сыворотки крови, включающая 9 компонентов, 20 белков, обеспечивает развитие неспецифической резистентности и специфических иммунологических механизмов защиты.

Различают классический и альтернативный пути активации комплемента под влиянием соответственно специфических иммуноглобулинов, иммунных комплексов или антигенных воздействий.

В ряде случаев активация комплемента возникает вторично вслед за первичной активацией калликреин-кининовой системы, системы фибринолиза, свертывающей системы, а также под влиянием лизосомальных ферментов нейтрофилов, С-реактивного белка [1, 2, 3, 8, 10].

Активация системы комплемента сопровождается возникновением ряда биологических эффектов: обеспечивает активацию и хемотаксис фагоцитов, опсонизацию фагоцитируемого объекта, развитие лизиса клеток, на которых фиксируются иммунные комплексы вместе с комплементом, в связи с формированием ионопроницаемых трансмембранных каналов. Дефицит компонентов системы комплемента делает слизистую оболочку ротовой области чувствительной к патоген-ному воздействию микрофлоры, в то же время формируется аутоиммунно- и онкогенноопасная ситуация.

Компоненты комплемента, так же как иммуноглобулины, могут попадать в слюну из кровотока предположительно через зубодесневую борозду. Значительная часть этих факторов специфической иммунной защиты ротовой полости скапливается в зубодесневой жидкости – в борозде и пародонтальных карманах.

Иммуноглобулины – гуморальные факторы специфической противобактериальной и противовирусной защиты полости рта.

Важнейшими факторами иммунной защиты ротовой полости являются иммуноглобулины A, G, М, которые в слюну, проникают путем пассивной диффузии либо через зубодесневую борозду, либо между эпителиальными клетками десны, в значительном количестве находятся в соединительной ткани десны, богатой микрососудами, возможна внутриклеточная локализация иммуноглобулинов. В сыворотке крови и жидкости десневых карманов соотношение концентрации иммуноглобулинов G и А одинаково и составляет 8:1. Секреторному иммуноглобулину А придается основное значение в иммунологической защите слизистой рта. Секреторный IgA фиксируется на эпителиальной клетке слизистой рта, становясь ее рецептором и придавая ей иммунологическую специфичность. Секреторный IgA устойчив к воздействию ферментов, поэтому присутствует в слюне в наибольших количествах [1, 2, 3, 8, 10].

Читайте также:  Функция гипофиза. Сосуды (кровоснабжение) гипофиза. Нервы (иннервация) гипофиза

В образовании молекулы секреторного IgA принимают участие два типа клеток: плазматические и эпителиальные. Мономеры секреторного IgA и J-цепь синтезируются плазматическими клетками подслизистого слоя, при этом образуется (IgA)2J, секретируемый в межклеточное пространство.

Секреторные иммуноглобулины обладают способностью агглютинировать микроорганизмы, препятствовать их размножению, фиксации к эпителию слизистой.

Важная роль в антибактериальной защите слизистой рта отводится антителам, принадлежащим к иммуноглобулинам классов G и М.

Отсутствие указанных иммуноглобулинов при иммунодефицитных состояниях приводит к развитию рецидивирующей инфекции слизистой рта [1, 2, 3, 5, 7, 8, 10].

Иммунитет слизистой ротовой полости нельзя рассматривать лишь как секреторный иммунитет, он обеспечивается взаимосвязанной функцией Т-, В-лимфоцитов и макрофагов. В нормальной ткани десны число макрофагов составляет около 2 % клеток, но в десневой жидкости их число достигает 18 %, это долгоживущие в тканях клетки.

Т- и В-лимфоциты содержатся и в десневой жидкости, причем В-клеток в 2– 3 раза больше, чем Т-лимфоцитов. Источником лимфоцитов ротовой жидкости является десневая жидкость, куда они мигрируют из крови, а также лимфоидное глоточное кольцо и соединительная ткань слизистой оболочки рта, в том числе десны и глотки.

Под влиянием антигенных стимулов лимфоидные клетки, располагающиеся в подслизистом слое десны, собираются в дискретную лимфоидную ткань [1, 2, 3, 4, 6, 9, 10].

Таким образом, наличие последовательного взаимодействия гуморальных факторов неспецифической резистентности, моноцитарно-макрофагальной системы, В системы лимфоцитов, обеспечивающей выработку антигенспецифических антител и нормального микробиоцитоза обеспечивают противоинфекционную защиту полости рта.

Библиографическая ссылка

Чеснокова Н.П., Понукалина Е.В., Полутова Н.В., Бизенкова М.Н. ЛЕКЦИЯ 2 ФАКТОРЫ РЕЗИСТЕНТНОСТИ И ИММУНОЛОГИЧЕСКИЕ МЕХАНИЗМЫ ЗАЩИТЫ СЛИЗИСТОЙ ОБОЛОЧКИ // Научное обозрение. Реферативный журнал. – 2018. – № 1. – С. 60-62;
URL: https://abstract.science-review.ru/ru/article/view?id=1860 (дата обращения: 03.05.2022). Специфическая противовирусная защита. Иммуноглобулины.

Секреторные иммуноглобулины А: sIgA и sIgM — как и где вырабатываются

Доминирование секреторного иммуноглобулина А среди других антител в слизистой оболочке дыхательных путей и ротоглотки

В полости рта и ротоглотке наибольшее протективное значение имеют sIgA слюны, а в носовых ходах и носоглотке – sIgA назального секрета. Помогают этим антителам в нейтрализации вирусов и бактерий секреторные IgM (sIgM), но их защитное значение существенно ниже.

Помимо sIgA и sIgM, в верхних отделах дыхательных путей и ротоглотке обнаруживаются в небольших количествах и все другие известные изотипы Ig.

Появление IgG и мономерного («сывороточного») IgA в слюне и назальном секрете обусловлено транссудацией этих молекул из плазмы крови.

При патологических (например, воспалительных) процессах увеличивается транссудация IgG, мономерного IgA и более крупных полимерных молекул IgM. В секретах слизистых оболочек дыхательных путей выявляют еще и IgD, который тоже участвует в противоинфекционном ответе.

Особенности выработки sIgA и sIgM

Вначале плазматические клетки слизистых оболочек синтезируют димерный IgA, в котором два мономера IgA соединены между собой J-цепью. После этого димерный IgA захватывается рецептором к полимерным иммуноглобулинам на базальной поверхности эпителиальных клеток и подвергаются транспорту к апикальной поверхности эпителиоцитов.

Здесь происходит распад транспортирующего рецептора, в результате которого внеклеточная часть этого рецептора (так называемый «секреторный компонент») остается связанной с димерным IgA, который высвобождается в окружающую среду (слюну, слизь, другие биологические жидкости).

Именно такой димерный IgA, связанный с секреторным компонентом, называют sIgA.

Как уже упоминалось, существуют еще и секреторный IgM (sIgM). Выработка sIgM напоминает таковую sIgA.

Все начинается с синтеза плазматическими клетками в слизистой оболочке пентамерного IgM, который захватывается рецептором к полимерным иммуноглобулинам на базальной поверхности эпителиальных клеток и подвергаются трансэпителиальному транспорту.

На апикальной поверхности эпителиоцитов пентамерный IgM вместе с секреторным компонентом высвобождается во внешнюю среду, превращаясь в sIgM.

Секреторные компоненты в составе sIgA и sIgM стабилизируют соответственно димерную или пентамерную структуру этих Ig и обеспечивают их длительное функционирование в биологических жидкостях.

Где происходит индукция выработки sIgA в слюне и назальном секрете?

Появление sIgA в слюне и назальном секрете происходит как следствие первичного контакта с антигенами патогенов в разных индуктивных зонах в верхних отделах респираторного и пищеварительного трактов.

Главными индуктивными зонами при этом являются небные и носоглоточные миндалины, а также протоки слюнных (особенно малых, поднижечелюстных и подъязычных) желез, открытые для прямого воздействия антигенов.

К индуктивным зонам относятся и другие участки слизистой оболочки полости рта, глотки, верхних и нижних дыхательных путей.

Все перечисленные индуктивные зоны доступны для стимулирующего действия топических бактериальных лизатов ИРС®19 и Имудон®.

Еще одной индуктивной зоной, антигенная стимуляция которой может привести к выработке антител в слюне и дыхательных путях, является лимфоидная ткань, ассоциированная с кишечником (Gut-Associated Lymphoid Tissue – GALT). Эта зона также доступна для действия топических бактериальных лизатов, компоненты которых неминуемо попадают в желудочно-кишечный тракт в результате проглатывания.

Важно то, что топические бактериальные лизаты ИРС®19 и Имудон® при курсовом применении не только индуцируют начальные этапы созревания В-лимфоцитов, получивших антигенную информацию, но и способствуют выработке эндогенного интерферона, а также обеспечивают сигналы хемотаксиса, привлекающие созревающие антитело-продуцирующие клетки из системной циркуляции в верхние отделы респираторного тракта и ротоглотку. В результате ИРС®19 и Имудон® существенно увеличивают выработку sIgA в зонах их введения в организм пациента.

При раннем назначении топических бактериальных лизатов адаптивные антибактериальные механизмы (локальная продукция sIgA) включаются как раз тогда (4–5-е сутки), когда наиболее высок риск развития вторичной бактериальной инфекции.

Таким образом, ИРС®19 и Имудон® не только предотвращают развитие вторичных бактериальных осложнений вирусной инфекции, но и неспецифически усиливают противовирусную и антибактериальную защиту уже в первые часы терапевтического применения.

Препараты обладают целым рядом фармакологических свойств, которые принципиально отличают их от иммуностимуляторов с системным действием, связанных со сложными маршрутами миграции иммунокомпетентных клеток. ИРС®19 и Имудон® действуют нацелено на стимуляцию противоинфекционной защиты в месте их первичного введения в организм т.е.

во входных воротах для болезнетворных вирусов и бактерий и арене ключевых патогенетических событий.

Иммунитет

Иммунная система осуществляет защиту организма от инфекционных и неинфекционных чужеродных агентов. При появлении и накоплении в организме клеток, отличающихся генетически, запускается каскад иммунных реакций и формируется иммунный ответ.

  Основное назначение иммунной системы — это обезвреживание потенциально опасного антигена и формирование резистентности к нему.  Иммунная система состоит из совокупности лимфоидных органов и тканей, суммарная масса которых составляет 2% от массы тела и которые разрознены между собой в анатомическом смысле.

Однако благодаря наличию медиаторов, сигнальных молекул и клеток, способных к миграции в различные органы и ткани, иммунная система представляет четко организованную структуру в функциональном смысле. Иммунная система включает центральные и периферические органы. К центральным относят тимус и костный мозг. В этих органах начинается созревание зрелых лимфоцитов.

  Периферические органы объединяют селезенку, лимфатические узлы и лимфоидную ткань, печень, кровь, лимфу. Наиболее известными структурами являются миндалины и пейеровы бляшки. Лимфоциты — основные функциональные клетки иммунной системы. Они образуются в костном мозге, а затем проходят созревание.

В зависимости от того, в каком органе лимфоциты проходят созревание, они подразделяются на две гетерогенные популяции: Т-лимфоциты (тимус) и В-лимфоциты (лимфоузлы). Т-лимфоциты ответственны за клеточный иммунитет, В-лимфоциты отвечают за гуморальный. В-лимфоциты являются предшественниками антителообразующих клеток.

В основе иммунных реакций лежат механизмы распознавания и разрушения чужеродные агентов, поступивших из вне или образовавшихся внутри организма. Механизмы представлены факторами специфической и неспецифической защиты. Первыми включаются звенья неспецифической защиты, которые включают:

  • механические барьеры (кожа, мерцательный эпителий и слизь дыхательной системы и т.д);
  • физико-химические барьеры (рН, пищеварительные ферменты);
  • иммуннобиологические барьеры: система комплемента, интерферон, фагоцитарно-активные клетки, естественные киллеры и др.

Факторы специфической защиты включаются, как вторая линия защиты. Они объединяют реакции антителообразования, иммунного фагоцитоза, гиперчувствительности немедленного и замедленного типа, реакции иммунологической толерантности и памяти. Благодаря существованию механизма «иммунологической памяти», иммунный ответ при повторном взаимодействии с теми же антигенами возникает в более короткие сроки и имеет более яркое выражение. Индукция иммунитета является благоприятным исходом иммунных реакций и ведет к восстановлению гомеостаза организма.

Читайте также:  Мембраностабилизирующие препараты. Кромогликат натрия (интал, кромолин, ифирал).

Состояние иммунитета обеспечивают наследуемые и индивидуально формируемые механизмы. 

К первому относится невосприимчивость человека или определенных видов животных к возбудителям некоторых инфекционных болезней. Например, люди невосприимчивы к возбудителю чумы собак, многие животные — к вирусу кори, гонококку и т.д. Устойчивость к соответствующей инфекции наследуется, как видовой признак, и проявляется у всех представителей данного вида. Это врожденный иммунитет или видовой. Приобретенный иммунитет формируется в течение всей жизни индивидуума. Примером естественного приобретенного иммунитета является невосприимчивость к инфекции после перенесенного заболевания. Так называемый постинфекционный иммунитет. Например, ветряная оспа. Приобретенный иммунитет может быть активным и пассивным. Активно приобретенный иммунитет возникает в результате перенесенного инфекционного заболевания или введения в организм вакцины. Пассивно приобретенный иммунитет формируется при передаче антител от матери к плоду или может быть искусственно создан путем парентерального введения в организм готовых иммунореагентов. К ним относят специфические иммуноглобулины, иммунные сыворотки и лимфоциты, способные защитить организм от антигенов.  Иммунитет может быть генерализованным и местным. При местном иммунитете происходит защита покровов организма, которые контактируют с внешней средой: слизистые оболочки мочеполовых органов, желудочно-кишечного тракта и т.д.

Существует несколько видов иммунитета в зависимости от свойств антигенов:

  • противобактериальный;
  • противовирусный;
  • противоопухолевый;
  • трансплантационный иммунитет;
  • противопаразитарный;
  • антитоксический и т.д.

Иммунную реакцию против собственных антигенов называют аутоиммунной.  Каждый из иммунитетов имеет свои особенности течения.

Характеристику состояния иммунной системы организма, выраженную количественными и качественными показателями ее компонентов, называют иммунным статусом. Определение иммунного статуса проводят с целью правильной постановки диагноза заболевания, прогнозирования его течения и выбора метода лечения.

Противовирусный иммунитет

ПротивобактериальныйПротивовирусный • • При паразитных болезняхВозрастные особенности у детей • • В пожилом и старческом возрасте

    Противовирусный иммунитет. Отличие противовирусного И. от других видов И. (против бактерий, простейших, грибков и т.д.) связано со своеобразием структуры и размножения вирусов, особенностями патогенеза вирусных инфекций. Видовой противовирусный И.

обусловлен отсутствием у клеток данного вида организмов рецепторов для прикрепления (адсорбции) соответствующих вирусов или их неспособностью репродуцироваться после проникновения в клетку, наличием неспецифических ингибиторов и нуклеаз в сыворотке крови, множеством других факторов.

Немаловажную роль в защите от вирусов играет воспалительная реакция, направленная на ограничение распространения вирусов в организме и фиксацию их в воротах инфекции.

При этом помимо клеток крови (макрофагов, естественных киллеров) противовирусный эффект оказывают такие универсальные реакции на внедрение вирусов, как общее или локальное повышение температуры и увеличение кислотности среды.

    Приобретенный противовирусный И. формируется в результате перенесенного заболевания или иммунизации организма с помощью вакцин.

Он определяется сочетанием специфических факторов (иммуноглобулинов, В- и Т-лимфоцитов) и факторов неспецифической (естественной) резистентности (воспалительной реакции, интерферонов, противовирусных ингибиторов, естественных киллеров, макрофагов и др.).

Так, термолабильные сывороточные b-ингибиторы (b-липопротеины) обладают инактивирующим действием против широкого круга вирусов. Уровень содержания в сыворотке этих ингибиторов взаимосвязан с резистентностью организма к вирусному заражению. У новорожденных и детей первого года жизни он низок, чем в известной степени восприимчивость объясняется к вирусам.

    Та же закономерность характерна для интерферонов — важнейших факторов неспецифической резистентности. Практически все вирусы обусловливают выработку интерферонов, их образование является одной из первых защитных реакций организма на внедрение вирусов.

Интерфероны в отличие от антител подавляют внутриклеточные этапы репродукции вирусов в зараженных клетках и обеспечивают невосприимчивость к вирусам окружающих здоровых клеток.

Попадая из ворот инфекции в кровь, интерфероны распределяются по организму, предотвращая последующую диссеминацию вирусов.

    Таким образом, факторы неспецифической резистентности в сочетании с медиаторами воспаления способны разрушать инфицированные вирусами клетки. Если этого не происходит и вирусы размножаются, наступает вторая (специфическая) стадия противовирусного И.

, связанная с продукцией вируснейтрализующих антител В-лимфоцитами и активацией регуляторных Т-лимфоцитов (Т-хелперов, Т-супрессоров, цитотоксических лимфоцитов), а также обширного круга Т-лимфоцитов — эффекторов лимфоцитарно-моноцитарного ряда. Интенсивность противовирусного И.

определяется сложной системой межклеточных и медиаторных отношений, меняющейся в зависимости от индивидуального иммунного статуса человека и особенностей конкретного возбудителя.

    При острых (явных) инфекциях (гриппе, полиомиелите и др.) вскоре после контакта вирусов с клетками начинается разрушение последних. В этих случаях болезнь развивается быстро. При латентных (хронических, дремлющих, медленных инфекциях) вирусы могут оставаться в клетках неопределенно долгое время, не оказывая характерного повреждающего действия.

Одним из механизмов такой персистенции может быть интеграция или встраивание генетическою материала (ДНК, РНК) вирусов в геном клетки. Под влиянием провоцирующих факторов (охлаждение, воздействие ионизирующего излучения, стрессы и др.) скрытая бессимптомная инфекция переходит в явное заболевание.

Между этими двумя крайними видами взаимодействия вирусов с клетками существует множество переходных форм.

    Наблюдается широкая индивидуальная вариабельность и способности организма к иммунному ответу. Уровень специфической и неспецифической резистентности помимо возможных врожденных дефектов определяется множеством других факторов (возраст, стрессы, питание, суточный биоритм, время года и т.д.). В отдельных случаях вирусы несколько видоизменяются и т.о.

избегают нейтрализующего действия антител и других специфических механизмов иммунной защиты. Это явление, называемое антигенным дрейфом, особенно хорошо изучено в отношении вируса гриппа. В большинстве случаев основная роль в развитии противовирусного И.

принадлежит регуляторным Т-лимфоцитам, осуществляющим контроль за антителообразующими В-лимфоцитами и эффекторными Т-лимфоцитами. Способность многих вирусов размножаться и разрушать клетки иммунной системы или подавлять их функции приводит к иммуносупрессии и может способствовать переходу острой инфекции в хроническую форму.

Так, поражение вирусами макрофагов вызывает подавление их антигенпрезенттирующей функции и приостанавливает дальнейший иммунный ответ; взаимодействие вирусов с антигенными детерминантами главного комплекса гистосовместимости изменяет клеточные мембраны и вызывает дефектность цитотоксических микроцитов; заражение В-лимфоцитов вирусами герпеса может вызвать их поликлональную активацию и резкое увеличение числа инфицированных клеток. Другим результатом поликлональной стимуляции В-лимфоцитов является образование полиспецифических иммуноглобулинов классов G и М, которые могут взаимодействовать с клетками и тканями внутренних органов и провоцировать развитие аутоиммунного процесса. Наконец, поражение вирусами делящихся Т-хелперов при ВИЧ-инфекции резко снижает, вплоть до полного выключения, иммунную защиту. Более того, вирусы могут подавлять образование лимфокинов и тем самым нарушать нормальное функционирование иммунной системы.

    Повышение невосприимчивости к вирусным инфекциям достигается вакцинацией, использованием интерферонов и их индукторов, иммуномодуляторов, с помощью различных химиопрепаратов. Исторически первым и надежным способом, приводящим к активации иммунитета, является вакцинация. Продолжительность противовирусного И.

при вакцинации широко варьирует Наиболее длительную защиту обеспечивают вакцины против кори и желтой лихорадки (более 15 лет, возможно, пожизненно); эффект вакцин против полиомиелита, краснухи и эпидемического паротита сохраняется 5—8 лет, меньше длительность И. при гриппе (1—2 года).

Однако возможности противовирусной вакцинации не беспредельны, т.к. большое число прививок может вести к развитию аллергических реакций, а при заболеваниях, вызываемых множеством вирусов (например, причиной острых респираторных заболеваний являются около 150 вирусов различных таксономических групп), вакцинация не дает желаемого эффекта.

В этих случаях на первое место выдвигаются способы повышения неспецифической резистентности.

    Интерфероны, иммуномодуляторы и химиопрепараты, не обладающие узкой специфичностью вакцин, можно использовать в тех случаях, когда вакцины отсутствуют или их применять поздно (заражение уже произошло).

Как правило, эффект лечения тем выше, чем раньше оно начато, поэтому перечисленные препараты следует вводить при появлении первых признаков вирусного заболевания (в 1—2-й дни болезни). Интерфероны, их индукторы и иммуномодуляторы оказывают выраженное активирующее влияние на систему И.

, принимая участие практически во всех его реакциях; они могут увеличивать образование антител, стимулировать фагоцитоз, усиливать цитотоксическую активность лимфоцитов, подавлять гиперчувствительность замедленного типа, влиять на процессы реализации иммунологической памяти.

ПротивобактериальныйПротивовирусный • • При паразитных болезняхВозрастные особенности у детей • • В пожилом и старческом возрасте

Об Иммунитете Источник: «Малая медицинская энциклопедия»

Ссылка на основную публикацию
Adblock
detector