Загрузка ситовидных трубок растения.

Загрузка ситовидных трубок растения.

НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О САЙТЕ

Было показано, что концентрация сахарозы в ситовидных трубках листа обычно находится в пределах от 10 до 30%, тогда как в фотосинтезирующих клетках, где этот сахар образуется, концентрация его в растворе составляет всего лишь около 0,5%. Значит, загрузка ситовидных трубок происходит против концентрационного градиента. На коротком пути от хлоропласта до ситовидной трубки, составляющем не более 3 мм, вещества могут двигаться и по симпласту, и по апопласту.

В 1968 г. Ганнинг и его сотрудники описали новый тип видоизмененных клеток-спутников. В результате дополнительного утолщения клеточные стенки у них образуют многочисленные внутренние выступы, и это примерно в десять раз увеличивает площадь плазматической мембраны, выстилающей такую стенку.

Как полагают, такое видоизменение клеток связано с необходимостью активно поглощать вещества из соседних фотосинтезирующих клеток и активно же передавать их ближайшим ситовидным элементам через сложно устроенные, сильно развитые плазмодесмы. Энергию для всех этих активных процессов доставляют многочисленные митохондрии, лежащие в цитоплазме таких клеток.

Эти видоизмененные клетки называются передаточными клетками. Позднее сходного типа клетки с выростами клеточной стенки были найдены и в других местах, где происходит транспорт веществ на короткое расстояние, например в паренхиме ксилемы. Такие клетки очень легко рассмотреть на сделанных вручную срезах узла традесканции после окраски толуидиновым синим.

Эти клетки есть не у всех растений, но они довольно обычны у бобовых и некоторых других семейств. На рис. 14.28 показано, как они выглядят в электронном микроскопе.

Загрузка ситовидных трубок растения.Рис. 14.28. Поперечный разрез одной из тонких жилок листа Senecio vulgaris. В зоне флоэмы (вверху) видны шесть клеток паренхимы, окружающих два ситовидных элемента. Сверху и снизу от ситовидных элементов — две пары клеток-спутников, видоизмененных в передаточные клетки типа А. Сбоку от них находится по одной передаточной клетке типа В. Клетки этих двух типов резко различаются по относительной плотности цитоплазмы, по полярности зон, в которых находятся внутренние выросты клеточных стенок, и по способу соединения с ситовидными элементами; клетки типа А, как правило, соединены плазмодесмами, тогда как между клетками типа В и ситовидными элементами плазмодесмы втречаются очень редко. Внизу видны два элемента ксилемы, а по обеим сторонам от них находятся две большие клетки обкладки проводящего пучка; они видны лишь частично. Стрелками показаны некоторые из возможных путей возврата растворенных веществ внутрь жилки после их доставки к апопласту по ксилеме (см. в тексте). Увеличение х 6560

Транспорт у животных

Почти у всех животных имеется специальная система для транспорта и распределения веществ в организме. Исключение составляют простейшие, кишечнополостные и плоские черви.

У представителей этих типов очень велико отношение поверхности тела к его объему, поэтому для их нужд вполне достаточно простой диффузии газов через поверхность тела.

Да и внутри организма веществам приходится проходить такие малые расстояния, что они вполне могут перемещаться путем диффузии или с током цитоплазмы (разд. 7.2.4).

С увеличением размеров и сложности строения организмов возрастают и количества веществ, поступающих внутрь и выходящих наружу.

Расстояния, которые приходится проходить этим веществам в организме, тоже увеличиваются, и для их распределения уже недостаточно простой диффузии.

Поэтому здесь нужен какой-то иной способ транспорта веществ из одной части тела в другую, и таким способом становится перенос их с током жидкости.

Проводящие ткани растений. Их строение, функции и месторасположение

Проводящая ткань — одна из растительных тканей, которая необходима для перемещения питательных веществ по организму. Это важный структурный компонент генеративных и вегетативных органов размножения.

Проводящая система являет собой совокупность клеток с межклеточными порами, а также паренхиматозных и передаточных клетки, которые вместе обеспечивают внутренний транспорт жидкости.

Загрузка ситовидных трубок растения.

Эволюция проводящих тканей. Биологи предполагают, что появление сосудистой системы растений обусловлено переходом из воды на сушу.

При этом образовалась подземная и надземная части: стебель и листья оказались на воздухе, а корень – в почве. Так появилась проблема передачи пластических и минеральных соединений.

Благодаря появлению проводящих тканей, стала возможной циркуляция жидкости, минералов, АТФ по всему организму.

Особенности строения проводящей ткани растений

Строение проводящей ткани растений достаточно сложное, так как содержат разные структурные и функциональные элементы. Она включает ксилему (древесину) и флоэму (луб), по которым осуществляется движение воды в двух направлениях.

Ксилема (древесина)

К ксилеме относят следующие ткани:

  • Собственно проводящие (трахеиды и трахеи);
  • механические (древесинные волокна);
  • паренхиматозные.

Мертвыми элементами проводящей ткани растений могут быть сосуды (трахеи) и трахеиды, так как состоят из отмерших клеток.

Трахеи — представляют собой трубки с утолщенными оболочками. Они образовались из ряда вытянутых клеток, размещенных друг над другом. Продольные оболочки клеток одревесневают и происходит неравномерное их утолщение, а поперечные стенки разрушаются, формируя сквозные проемы. Трахеи длиной, в среднем, 10см, но у некоторых растений — до 2 (дуб) или 3-5м (тропические лианы).

Трахеиды — одноклеточные элементы веретеновидной формы с заострениями на концах. Длина их — около 1мм, но может быть 4-7мм (сосна).

Так же, как и трахеи, это отмершие клетки с одревесневшими и утолщенными стенками. Утолщения имеют вид колец, спиралей, сетки.

Трахеиды отличаются от трахей отсутствием отверстий, поэтому движение жидкости здесь идет сквозь поры. Они высокопроницаемы для растворенных в воде минералов.

Общность строения трахей и трахеид объясняется единой функцией. По трахеям и трахеидам идет восходящее движение минерализованной воды от корней в надземную часть растения. Подробнее про поглощение  воды корнем.

Загрузка ситовидных трубок растения.Строение проводящей ткани растений

Флоэма (луб)

Флоэма также состоит из трех тканей:

  • Собственно проводящей (ситовидная система);
  • механической (лубяные волокна);
  • паренхиматозной.

Наиболее важные структурные единицы флоэмы это ситовидные трубки и клетки, которые объединены в единую систему посредством специальных полей и межклеточных контактов.

Ситовидные трубки — продолговатые, живые клетки, размеры их колеблются в пределах от 0,1 миллиметра до 2мм. Как и сосуды, они наиболее длинны у лиан. Продольные стенки их также утолщены, но остаются целлюлозными и не одревесневают. Поперечные оболочки продырявливаются, подобно ситу и называются ситовидными пластинками.

Органические продукты синтеза (энергия АТФ) перемещаются от листьев, к нижерасположенным частям, по разобщенным протопластам (смесь вакуолярного сока с цитоплазмой).

Цитоплазма клеток сохраняется, а ядро разрушается в самом начале формирования трубок. Даже при отсутствии ядра, клетки не отмирают, но их дальнейшая деятельность зависит от специфических клеток-спутниц.

Они находятся рядом с ситовидными трубками. Это живые, тонкие, вытянутые по направлению ситовидной трубки клетки.

Клетки спутницы являются своеобразной кладовой ферментов, которые через поры выделяются в членик ситовидной трубки и стимулируют перемещение органических веществ по ним.

  • Клетки-спутницы и ситовидные трубки тесно взаимосвязаны и не могут функционировать отдельно.
  • Ситовидные клетки не имеют специальных клеток-спутниц и не утрачивают ядра, ситовидные поля хаотично разбросаны на боковых стенках.
  • Проводящие ткани растений их строение и функции кратко излажены в таблице.
СтруктураРасположениеЗначение
Ксилема – проводящая ткань, состоит из полых трубок – трахеид и сосудов с уплотненной клеточной оболочкой. Древесина (ксилема), внутренняя часть дерева, которая находится ближе к осевой части, у травяных растений – больше в корневой системе, стебле. Восходящее движение воды и минеральных веществ от почвы в корни, листья, соцветия.
Флоэма имеет клетки-спутницы и ситовидные трубки, которые построены из живых клеток. Луб (флоэма) расположен под корой, формируется вследствие деления клеток камбия. Нисходящее движение органических соединений от зеленых, способных к фотосинтезу частей в стебель, корень.

Где находится проводящая ткань у растений

Если сделать поперечный срез дерева, можно увидеть несколько слоев. Вещества перемещаются по двум из них: по древесине и в лубе.

  1. Луб (отвечает за нисходящее движение) находится под корой и при делении инициальных клеток к лубу отходят элементы оказавшиеся снаружи.
  2. Древесина образуется из клеток камбия, что отошли к центральной части дерева и обеспечивает восходящий ток.

 Роль проводящей ткани в жизни растения

  1. Перемещение растворенных в воде минеральных солей, поглощенных с почвы в стебель, листья, цветы.
  2. Транспорт энергии от фотосинтезирующих органов растения в иные участки: корневую систему, стебли, плоды.
  3. Равномерное распределение фитогормонов в организме, что способствует гармоничному росту и развитию растения.
  4. Радиальное перемещение веществ в остальные ткани, к примеру, в клетки образовательной ткани, где идет интенсивное деление. Для такого рода транспорта необходимы также передаточные клетки с множественными выступами в мембране.
  5. Проводящие ткани делают растения более гибкими и устойчивыми к внешним воздействиям.
  6. Сосудистая ткань представляет собой единую систему, которая объединяет все органы растений.
Читайте также:  Йоддицерин - инструкция по применению, отзывы, аналоги и формы выпуска (раствор 25 мл во флаконе) лекарства для лечения гнойных ран, ожогов, отморожений, мастита и ангины у взрослых, детей и при беременности

Оцените, пожалуйста, статью. Мы старались:) (37

Транспорт ассимилятов в растении

Доставка синтезированных растением органических веществ (ассимилятов) от мест их производства к местам потребления (в общем и целом, от донорных органов к акцепторным, см, 6.8.3) осуществляется у кормофитов почти целиком по ситовидным элементам флоэмы (см. 3.2.4.1).

Для преодоления коротких расстояний ассимиляты могут переходить от клетки к клетке также симпластически или апопластически, механизмом для этого служит диффузия1; передача и получение ассимилятов через плазмалемму осуществляется при помощи специальных транс- локаторов.

Только в виде исключения ассимиляты транспортируются по ксилеме. Это происходит весной у деревьев, когда зеленые листья еще не развиты (пасока, см. 6.3.5).

Кроме того, по ксилеме в побег транспортируются синтезированные в процессе ассимиляции нитратов аминокислоты, такие, как глутамин и аспарагин, и биологически активные вещества, например, фитогормоны (см. 7.6), которые также входят в состав сока ксилемы (см. 6.3.5).

1 Как симпластический транспорт, так и транспорт через апопласт от клетки к клетке — активные процессы, идущие с затратой энергии. Например, при симпластическом транспорте главную роль играет везикулярный транспорт с участием цитоскелета, так что приписывать транспорт ассимилятов исключительно диффузии нельзя, — Примеч. ред.

6.8.1. Состав флоэмного сока

В основном все вещества (или их соответствующие предшественники), которые не могут синтезироваться в неавтотрофных клетках, должны туда доставляться.

Главными транспортными метаболитами являются сахар и обнаруженные наряду с ним в соке ситовидных трубок аминокислоты, а также другие азотистые соединения, нуклеотиды (в основном высокие концентрации АТФ), витамины, фитогормоны, органические кислоты и минеральные вещества.

Из более чем 200 значимых белков, обнаруженных в содержимом ситовидных трубок, большая часть специфична для ситовидных клеток, а соответственно и ситовидных трубок.

Анализ содержимого ситовидных трубок проводится с помощью афидной методики.

Для, производящая медвяную росу, прокалывает своим сосущим хоботком отдельные ситовидные трубки, под действием тургорного давления содержимое флоэмы попадает в пищеварительную систему тли, где некоторые азотистые соединения, витамины и минеральные вещества усваиваются организмом насекомого, а избыточный сахар выделяется в виде медвяной росы (10 — 15%-й водный раствор сахара). При помощи лазера отделяют хоботок тли, получая таким образом доступ к чистому содержимому ситовидных трубок, и анализируют его. Прикрепляя к хоботку зонд, измеряющий давление, можно также определить величину тургора в ситовидных трубках.

Сахар составляет, как правило, более 90 % сухого вещества «сока ситовидных трубок» Принимая во внимание типы транспортного сахара флоэмы, можно выделить три основные группы растений

1. Виды, которые в качестве основного транспортного сахара содержат сахарозу. Сюда относится большинство изученных видов, например, все известные ныне папоротники, голосеменные и однодольные растения, из двудольных — все известные бобовые.

2.

Виды, которые наряду с сахарозой содержат значительное количество олигосахаридов семейства раффиноз, например, раффинозы, стахиозы, вербаскозы, аюгозы (при этом имеются в виду сахарозогалактозиды, рис 6 91). К данной группе относятся также представители многочисленных семейств растений, из отечественных, например, Betulaceae(бывшие Corylaceae), Malvaceae (бывшие Tihaceae), Ulmaceae и Cucurbitaceae.

3. Виды, которые наряду с названными сахарами содержат в ситовидных трубках большие количества сахароспиртов (см рис 6 91), например, Oleaceae содержат маннит («ясеневая манна» с высоким содержанием маннита получают из Fraxinus ornus), растения из некоторых подсемейств Rosaceae содержат сорбит, Celastraсеае — дульцит.

Восстановленный азот транспортируется по флоэме преимущественно в форме протеиногенных аминокислот (в основном глутамина, глутамата, аспартата) У Betulaceae и Juglandaceae важнейшей транспортной формой азота является непротеиногенная аминокислота L-цитруллин (см рис 6 91), она служит также для запасания азота

Рис. 6.91. Структура некоторых дополнительных транспортных ассимилятов, которые имеются у определенных групп растений (см текст) наряду с общими транспортными метаболитами (сахарозой как углеводом, протеиногенными аминокислотами, в основном глутамином, глутаматом, аспартатом)

Загрузка ситовидных трубок растения.

6.8.2. Загрузка флоэмы

Ассимиляты, образованные в фотосинтезирующих тканях листа (в основном углеводы и аминокислоты), попадают из клеток мезофилла в ситовидные элементы тончайших листовых жилок и пересекают при этом окружающие проводящий пучок клетки обкладки пучка и паренхиму флоэмы; таких клеток совсем немного: 3 — 5.

Транспорт осуществляется путем диффузии через многочисленные плазмодесмы между этими клетками. Загрузка ситовидных элементов (ситовидных трубок или клеток) начинается отсюда и происходит двумя способами (см. рис. 6.72): либо апопластически, либо симпластически.

Вероятно, эти два пути могут комбинироваться

Апопластическая загрузка флоэмы преобладает у видов, которые используют в качестве транспортного сахара сахарозу. По пути из мезофилла в паренхиму флоэмы сахароза проникает в апопласт. Это происходит благодаря пассивной диффузии, так как в данных клетках концентрация сахарозы намного выше, чем в апопласте. Транспортная система неизвестна.

Из апопласта сахароза с помощью специального транслокатора, сахарозо-протонного симпортера, попадает в клетки-спутницы (или их функциональные эквиваленты) и далее — в ситовидные клетки. Движущую силу для поглощения сахарозы флоэмой поставляет транслоцирующая ионы водорода АТФаза, которая относится к Р-типу (см. 6.1.5, рис. 6.

5); поступление сахарозы во флоэму является вторично активным процессом, который ведет к концентрированию сахарозы в ситовидных трубках. Необходимую для поддержания протонного градиента АТФ дает митохондриальное дыхание. В результате действия дыхательных ядов процесс загрузки флоэмы у растений с апопластическим типом загрузки эффективно тормозится.

Сахарозо-протонный симпортер удалось клонировать (см. бокс 7.3) и локализовать в плазматической мембране клеток-спутниц (например, у подорожника) или ситовидных клеток (у картофеля, томатов, табака) с помощью специфичных антител. Безъядерные ситовидные элементы часто получают сахарозу от клеток-спутниц, в плазмалемме которых содержится много молекул транспортеров сахарозы.

В клетках-спутницах поглощенная сахароза должна посредством диффузии1 попасть через плазмодесмы в ситовидные трубки.

1 См. примечание к подразделу 6.8. — Примеч. ред.

Симпластическая загрузка флоэмы свойственна видам, которые наряду с сахарозой транспортируют значительные количества олигосахаридов семейства раффиноз (см. рис. 6.91).

При цитологическом изучении у этих видов можно обнаружить многочисленные плазмодесмы, которые симпластически связывают все клетки транспортного пути. Как достигается наблюдаемое в ситовидных клетках повышение концентрации углеводов, неясно.

Согласно новой гипотезе, синтез раффинозных сахаров из сахарозы и галактозы у этих видов должен происходить исключительно в клетках, окружающих ситовидные, поэтому концентрация сахарозы в этих клетках сохраняется на низком уровне, что обеспечивает ее диффузию из мезофилла.

Данная модель дает представление о чрезвычайно селективной проводимости плазмодесм (см. 7.4.4.1), т.е. раффинозные сахара могут диффундировать в ситовидные трубки, но не обратно в мезофилл1. Однако это до сих пор не подтверждено экспериментально.

1 Можно также предположить, что селективность обеспечивается компартментацией сахарозы и раффинозных сахаров в разных частях ЭПР. По этой модели концентрирование сахаров идет за счет везикулярного транспорта с участием цитоскелета. — Примеч. ред.

У растений с апопластической загрузкой флоэмы аминокислоты, вероятно, также поступают в ситовидные трубки с помощью вторично активного аминокислотно-протонного симпортера. Эти транслокаторы все же не обладают особой специфичностью в выборе субстрата, т.е. все синтезированные в данном месте аминокислоты попадают во флоэму.

Примечательно, что растения с симпластической загрузкой флоэмы используют также специальные транспортные аминокислоты (Сucurbitасеае, например, транспортируют непротеиногенную аминокислоту цитруллин (см. рис. 6.91), промежуточный продукт в биосинтезе аргинина).

Причину нужно искать в том, что эффективная симпластическая загрузка флоэмы аминокислотами, как и в случае с углеводами, требует направленного синтеза специфических транспортных веществ.

6.8.3. Транспорт ассимилятов по флоэме

В пределах ассимилирующих органов производятся осмотически активные метаболиты в высоких концентрациях (около 0,2 — 0,7 моль • л-1 углеводов и около 0,05 моль • л-1аминокислот). Пассивный приток воды из окружающих тканей (из ксилемы в том числе) создает в месте загрузки флоэмы высокий тургор. Ситовидные клетки в эксперименте можно подвергнуть плазмолизу.

Это означает, что они имеют интактную плазмалемму с избирательной проницаемостью. С другой стороны, в местах потребления ассимилятов происходит их изъятие из флоэмы (см. 6.8.4; рис. 6.72), которое является причиной последующего пассивного оттока воды и соответствующего понижения тургора. Вода при этом поступает в ксилему.

Читайте также:  Переливание крови по неотложным показаниям. факторы риска переливания крови. переливание крови при гиповолемическом шоке.

Таким образом, тесное соседство ксилемы и флоэмы вполне объяснимо.

Между местами загрузки и разгрузки флоэмы в ситовидных трубках (клетках) в итоге возникает градиент давления. Этот градиент давления, согласно гипотезе тока под давлением, изначально сформулированной Мюнхом, ведет к массовому потоку содержимого ситовидных трубок от органов-доноров к органам-акцепторам (англ. source-to-sink).

В массовом токе по флоэме переносятся растворенные вещества. При этом скорость течения достигает от 0,5 — 1,5 м/ч, что позволяет быстро доставлять ассимиляты на далекие расстояния (содержимое одного звена ситовидной трубки у липы, например, меняется 5 раз за секунду!).

При средней скорости течения от 0,6 м • ч-1 и 0,5 моль • л-1 сахарозы поток составляет около 100 кг сахарозы в ч-1 • м-2 поперечного среза ситовидных трубок.

Градиент тургора в ситовидных трубках в направлении транспорта ассимилятов можно определить разными экспериментальными способами.

Для преодоления сопротивления течению ситовидной трубки необходим градиент давления от -0,04 МПа • м-1 (если принять за основу типичные размеры клеток и вязкость содержимого ситовидных трубок), около половины сопротивления течению приходится на ситовидные пластинки ситовидных трубок, т. е.

на наклонные пористые поперечные стенки ситовидных клеток (см. 3.2.4.1).

Считается, что сопротивление течению ситовидных пластинок/ поперечных стенок благоприятствует выравниванию градиента тургора, приводящего в движение массовый ток по флоэме, так как в непрерывном столбе жидкости градиент давления очень быстро снижается. Движущей силой массового тока по флоэме могут быть очень многие локальные осмотические градиенты между ситовидными элементами и окружающими источниками ассимилятов и их потребителями.

Согласно теории тока под давлением, направление движения транспорта веществ во флоэме определяется осмотическими перепадами концентраций ассимилятов (и одновременно градиентом тургора) от доноров к акцепторам.

В качестве органов-поставщиков (source) функционируют, например, фотосинтезирующие взрослые листья или запасающие органы во время мобилизации запасных веществ (например, стволы или корни во время разворачивания листьев; семядоли или эндосперм во

время прорастания семян; клубни, луковицы, корнеплоды в процессе роста побега)- Особенно интенсивный экспорт азотсодержащих веществ начинается в листьях многолетних растений перед листопадом; он возвращает многолетние (переживающие зиму) органы большую часть белкового азота листьев после его гидролиза до аминокислот. Общая концентрация аминокислот во флоэме в течение этой фазы может достигать 0,5 моль л-1; углеводов в содержимом флоэмы в это время почти нет.

В качестве органов-потребителей(sink) функционируют все развивающиеся части растения (например, верхушечная меристема побега и корня; камбий; молодые растущие листочки — вплоть до половины и* конечного размера; созревающие плоды)- В одном большом растении может находиться несколько меняющихся в разное время органов-доноров и органов-акцепторов. Так, например, нижние листья часто снабжают корни, верхние, напротив, — верхушку побега, цветки и плоды. Поэтому противоположено направленные транспортные потоки обнаруживаются в одном и том же отрезке побега, но никогда — в одной и той же ситовидной трубке.

6.8.4. Разгрузка флоэмы

Разгрузка флоэмы может также происходить либо симпластическим путем, либо ацопластическим (см. рис. 6.72). В первом случае отток ассимилятов из ситовидных элементов в клетки органа-акцептора происходит по плазмодесмам. Это, скорее всего, имеет место в основном в незапасаю- щцх тканях, например, в растущих корнях и добегах.

Благодаря метаболическим процессам в их клетках, предположительно, сохраняется постоянным нужный для разгрузки флоэмы градиент концентрации. При апопластической разгрузке, важеной для запасающих тканей, ассимиляты сначала попадают в апопласт, а оттуда — в запасающие клетки. Транспортные белки в отдельности еще не охарактеризованы.

Протонные симпортеры метаболитов, возможно, все же играют роль при поглощении ассимилятов запасающими клетками.

С одной стороны, сахароза вступает в метаболический процесс в клетках согласно последовательности реакций, представленной на рис. 6.

72 (начинается с сахарозосинтазной реакции), образованный при этом глюкозо-6-фосфат (у некоторых видов также глюкозо-1 -фосфат) транспортируется в лейкопласты посредством фосфатного транслокатора, где вовлекается в синтез запасного крахмала. С другой стороны, гидролизуется с помощью фермента инвертазы, т. е.

разлагается в апопласте на глюкозу и фруктозу. Образованные гексозы поступают в клетки с помощью гексозо- протонного симпортера, фосфорилируются и используются в синтезе запасного крахмала (см. рис. 6.72).

Некоторые виды запасают углеводы в форме сахарозы (сахарная свекла, сахарный тростник) или глюкозы (некоторые плоды, например, виноград). Запасание этих растворимых сахаров происходит в вакуолях. Наряду с крахмалом дополнительные полисахариды выступают в роли запасных углеводов (см. 6.17.1.2).

Многие процессы обмена веществ, расходующие и мобилизующие ассимиляты, регулируются ростовыми и ингибирующими веществами, поэтому не приходится удивляться, что соответствующее размещение доноров и акцепторов ассимилятов тесно связано с локальной активностью регуляторов роста: так, например, фитогормоны могут побуждать камбий к делению и определяют его деятельность в качестве ткани-акцептора. Цитокинины (группа фитогормонов, см. 7.6.2) должны способствовать синтезу апопластической инвертазы, что приводит к усилению гидролиза сахарозы в апопласте соответствующих клеток и способствует изъятию сахарозы из флоэмы. Следовательно, цитокинины регулируют «акцепторную силу» (англ, sink strength) органа или ткани.

Трансгенные растения (см. бокс 7.3), которые аккумулируют больше инвертазы в апопласте запасающих органов, способны к усиленному запасанию крахмала в этих органах. Это свидетельствует о том, что активность инвертазы в органе-акцепторе может служить ограничивающим фактором для разгрузки флоэмы.

ПредыдущаяСодержаниеСледующая

ПОИСК

    Передвижение веществ по растению на дальние расстояния осуществляется по проводящим пучкам. По сосудам и трахеидам ксилемы вещества с водным током транспортируются от корней к верхушкам побегов. Движущие силы ксилемного транспорта — корневое давление и транспирация. Отток ассимилятов из листьев и из запасающих органов идет по ситовидным трубкам флоэмы.

Загрузка как ксилемных (в корнях), так и флоэмных окончаний (в листьях) происходит благодаря деятельности активных мембранных насосов (Н -помп), которые функционируют в плазмалемме живых клеток, окружающих сосуды и ситовидные трубки.

Вслед за поступлением осмотически активных веществ в сосуды и ситовидные трубки по осмотическим законам входит вода, и дальнейшее передвижение веществ по сосудистой системе осуществляется в результате возрастающего гидростатического давления. [c.

300]     Поступление в клетки флоэмы комплекса Н+ — сахароза ( загрузка ) и его выделение из клеток флоэмы ( разгрузка ), вероятно, происходят путем перемещения молекул через мембрану с участием пермеазы. Незаряженные молекулы сахарозы проталкиваются через пермеазу ионами Н+, причем направление нетто-диффузии определяется электрохимическим градиентом Н+.

[c.

225]

    Эта теория хорошо согласуется с основными известными О флоэме данными флоэма находится под положительным давлением между донором и акцептором существуют как градиенты давления, так и осмотические градиенты содержимое ситовидных трубок перетекает по ним сплошным потоком открытые-ситовидные поры благоприятствуют такому перетеканию раствора.

Остается одна проблема, заключающаяся в том, что, как известно, флоэмный транспорт требует более активного метаболизма, чем тот, который необходим для простого поддержания плазмалеммы ситовидных трубок. Эту дилемму можно решить, если принять во внимание тот факт, что метаболизм требуется для трех отдельных процессов загрузки флоэмы в листьях сахарозой, переноса сахарозы к местам потребления и удержания ее-внутри мембраны ситовидных трубок. Разное соотношение этих трех процессов определяет направление движения содержимого ситовидных трубок, расположенных вертикальными примыкающими друг к другу рядами. [c.

253]

    Ключевую роль в механизме флоэмного транспорта играет загрузка флоэмных окончаний, В основе этой загрузки в клетках флоэмы лежит работа Н -помпы, которая активируется фитогормонами, прежде всего ауксином, Абсцизовая кислота блокирует Н+/К+ обмен. Как известно, содержание АБК возрастает в тканях листа при неблагоприятных условиях, особенно при водном дефиците. [c.

299]

    Гипотеза Мюнха чисто физическая, и не объясняет, почему ситовидные трубки должны оставаться живыми и метаболически активными.

Она не объясняет также, каким образом клетки мезофилла листа способны загружать ситовидные трубки ассимилятами против осмотического градиента известно, что у флоэмы /о более отрицательный, чем у фотосинтезирующей ткани.

С учетом этого гипотеза Мюнха бьша впоследствии дополнена — в нее включили механизм активной загрузки растворенных веществ в ситовидные трубки.

Он подразумевает, что осмотический и гидростатический градиенты начинаются не в фотосинтезирующем мезофилле, а непосредственно во флоэме. Кроме того, полагают, что разгрузка флоэмы на уровне потребителей — тоже активный процесс. Такая современная версия гипотезы Мюнха называется гипотезой тока под давлением. [c.

135]

    При разгрузке ситовиднъхх трубок растворенные вещества, вероятно, уходят из них в передаточные клетки по плазмодесмам. В результате водный потенциал трубок повышается (становится менее отрицательным). Это тормозит потенциальный осмос извне и поддерживает гидростатический градиент между местами загрузки и разгрузки флоэмы. Полагают, что последний процесс может идти и через плазмалемму ситовидных трубок в их клеточные стенки и далее апопластным путем. [c.

137]

    В растении сахароза, образовавшаяся при фотосинтезе, активно накачивается в ситовидные трубки мелких листовых жилок в ходе процесса, называемого загрузкой флоэмы. Этот процесс приводит к снижению водного потенциала ситовидных трубок, и вода начинает поступать в них путем осмоса.

В результате возникает давление, что вынуждает раствор перемещаться к потребляющим клеткам по градиенту давления. Из места потребления саха1роза активно удаляется, что вызывает повышение водного потенциала ситовидных трубок.

Затем вода диффундирует из ситовидных трубок по градиенту водного потенциала  [c.

252]

    Несмотря на то что для поддержания данной системы требуется большое количество энергии, сам то себе транспорт в ситовидных трубках не зависит от метаболизма. Скорость транспорта изменяется в соответствии с уровнем потребления.

Таким,-образом, метаболизм обеспечивает лишь удаление сахарозы из-флоэмы. Этот процесс вместе с метаболической загрузкой и поставляет энергию для непрерывного функционирования системы..

Само перетекание растворов питательных веществ от их источников к местам потребления или запаса1ния происходит по чистофизическим градиентам. [c.

255]

    Общепризнано, что транспорт по флоэме осуществляется путем перетекания растворов. Высокое гидростатическое давление, обуславленное движением воды в богатые сахаром зоны с высоким отрицательным водным потенциалом, вызывает перетекание растворов В зоны с более низким давлением.

Удаление сахара из них гарантирует постоянное аличие градиента и, следовательно, перетекание раствора. Критическими этапами в поддержании системы являются загрузка. растворенных веществ в ситовидные клетки и их разгрузка.

Полагают, что загрузка включает совместный транспорт (котранспорт) сахарозы и ионов Н+ с участием специфической пермеазы, обусловленный градиентом pH и электрохимическим градиентом. Поглощенные ионы Н+ выделяются впоследствии с помощью протонного транспортера, использующего энергию АТР.

Удержание сахарозы в ситовидных трубках против высоких осмотических градиентов связано, вероятно, с такими же активными процессами. [c.

256]

    Флоэмные окончания выполняют в листе роль коллекторов, аккумулирующих ассимиляты против градиента концентрации.

Ведущая роль в загрузке проводящих элементов ассимилятами принадлежит сопровождающим и паренхимным клеткам флоэмы, а у некоторых видов растений и более специализированным передаточным клеткам.

Есть данные о том, что клетки флоэмных окончаний поглощают сахара с участием ионов Н» , которые выкачиваются из клеток благодаря работе энергозависимого Н» -насоса (см. рис. 8.1). [c.

105]

    Передвижение ассимилятов по ситовидным трубкам проиц-ходит со скоростью 50—100 см/ч и включает в себя три взаимосвязанных процесса загрузку флоэмы, транспорт ассимилятов по ситовидным элементам и разгрузку флоэмы. [c.

296]

    Загрузка флоэмных окончаний. В свободном пространстве клеточных стенок (в апопласте) может находиться до 20% сахаров, содержащихся в листе, куда они попадают главным образом в виде сахарозы из фотосинтезирующих клеток мезофилла.

Особенности транспорта ассимилятов от мезофилла к флоэме изучены недостаточно, но, по-видимому, у разных видов растений он происходит неодинаково. Если в стенках клеток обкладки есть пояски Каспари, то сахара в этих участках должны проходить через симпласт.

Многочисленные плазмодесмы между клетками обкладки или клетками листовой паренхимы и клетками-спутниками могут способствовать сим-пластному транспорту.

Развитие системы лабиринтов в стенках клеток, лежащих между мезофиллом и ситовидными трубками (у ряда представителей бобовых), должно способствовать транспорту ассимилятов через мембрану и апопласт-ному перемещению веществ. У некоторых растений (сахарная свекла) нет структурных приспособлений для облегчения передвижения ассимилятов. В этом случае транспорт может быть обеспечен сильно развитой системой переносчиков на мембранах клеток. [c.

296]

    Наиболее обоснована предложенная Э. Мюнхом (1926) гипотеза потока под давлением.

Согласно этой гипотезе между фотосинтезирующими клетками листа, где в симпласте накапливается сахароза, и тканями, использующими ассимиляты (например, корнем), создается осмотический градиент, который в ситовидных трубках превращается в градиент гидростатического давления. В результате во флоэме возникает ток жидкости под давлением от листа к корню.

В настоящее время эта гипотеза получила поддержку благодаря изучению механизмов загрузки и разгрузки флоэмы — решающих факторов дальнего транспорта ассимилятов. Сохраняющаяся в ситовидных трубках плазмалемма с ее свойством избирательной проницаемости является важнейшим условием, поддерживающим поток под давлением.

В какой-то мере описанный механизм флоэмного транспорта сходен с механизмом, обеспечивающим подъем пасоки по ксилеме под действием корневого давления. Сходство особенно очевидно в случае весеннего плача древесных, в пасоке которых в этот период содержится много сахаров. [c.

298]

Большая Энциклопедия Нефти и Газа

Cтраница 1

Ситовидные трубки — это длинные трубчатые структуры, РїРѕ которым движутся РІ растении растворы органических веществ, главным образом растворы сахарозы.

Они образуются путем соединения конец в конец клеток, которые называются члениками ситовидных трубок.

Р’ апикальной меристеме, РіРґРµ закладываются первичная флоэма Рё первичная ксилема ( проводящие пучки), можно наблюдать развитие СЂСЏРґРѕРІ этих клеток РёР· РїСЂРѕ-камбиальных тяжей.  [1]

Однако ситовидные трубки, РїРѕ которым передвигаются сахара, содержат очень мало Р±РѕСЂР°. Возможно, Р±РѕСЂ каким-то образом усиливает поступление веществ РІРѕ флоэму.  [2]

Загрузка ситовидных трубок происходит здесь. Фотосинтезирующие клетки ( мезофилл) образуют сахара, в основном сахарозу и другие водорастворимые органические вещества.

Клетки-спутницы поглощают эти вещества по механизму активного транспорта, затрачивая при этом энергию.

РџРѕ мере концентрации растворенной органики внутрь клеток-спутниц осмотическим путем поступает РІРѕРґР°.  [4]

Разгрузка ситовидных трубок происходит в местах потребления растворенных веществ, например в корне, плодах, запасающих органах и зонах роста.

Удаление из раствора неводных молекул поддерживает здесь низкое осмотическое давление, а следовательно, и гидростатический градиент во флоэме.

 [6]

Членики ситовидных трубок имеют весьма характерное строение.

РЈ РЅРёС… тонкие клеточные стенки, состоящие РёР· целлюлозы Рё пектиновых веществ, Рё этим РѕРЅРё напоминают паренхимные клетки, однако РёС… СЏРґСЂР° РїСЂРё созревании отмирают, Р° РѕС‚ цитоплазмы остается лишь тонкий слой, прижатый Рє клеточной стенке. Несмотря РЅР° отсутствие СЏРґСЂР°, членики ситовидных трубок остаются живыми, РЅРѕ РёС… существование зависит РѕС‚ примыкающих Рє РЅРёРј клеток-спутниц, развивающихся РёР· РѕРґРЅРѕР№ СЃ РЅРёРјРё меристематической клетки. Членик ситовидной трубки Рё его клетка-спутница составляют вместе РѕРґРЅСѓ функциональную единицу; Сѓ клетки-спутницы цитоплазма очень густая Рё отличается высокой активностью. РџРѕРґСЂРѕР±РЅРѕ строение этих клеток, выявленное РїСЂРё помощи электронного РјРёРєСЂРѕСЃРєРѕРїР°, описано РІ РіР».  [7]

Р’ ситовидных трубках флоэмы сахароза передвигается СЃРѕ скоростью 40 — 150 СЃРј / час. Это передвижение активное, требующее затраты энергии РђРўР¤, образующейся РІРѕ флоэме РІ процессе интенсивного дыхания.  [8]

При разгрузке ситовидных трубок растворенные вещества, вероятно, уходят из них в передаточные клетки по плазмодесмам.

Это тормозит потенциальный осмос извне и поддерживает гидростатический градиент между местами загрузки и разгрузки флоэмы.

Полагают, что последний процесс может идти Рё через плазмалем-РјСѓ ситовидных трубок РІ РёС… клеточные стенки Рё далее апопластным путем.  [9]

РџРѕ системе ситовидных трубок продукты, образующиеся РІ зеленых частях растений, перемещаются РєРѕ всем его РґСЂСѓРіРёРј частям, питают РёС…. Основным РёР· транспортируемых продуктов является сахароза.  [11]

Промежуточным типом ситовидных трубок являются менее длинные ситовидные элементы.

Наконец, вершиной эволюции ситовидных трубок Сѓ двудольных являются относительно короткие клетки СЃ поперечной ( или несколько скошенной) стенкой, РЅР° которой располагается ситовидная пластинка, РіРґРµ уже невозможно выделить отдельные ситовидные поля.  [12]

Характерной чертой ситовидных трубок является наличие ситовидных пластинок. Эта их особенность сразу же бросается в глаза при рассматривании в световом микроскопе.

Ситовидная пластинка возникает в месте соединения торцевых стенок двух соседних члеников ситовидных трубок.

Вначале через клеточные стенки РїСЂРѕС…РѕРґСЏС‚ плазмодесмы, РЅРѕ затем РёС… каналы расширяются, превращаясь РІ РїРѕСЂС‹, так что торцевые стенки приобретают РІРёРґ сита, через которое раствор перетекает РёР· РѕРґРЅРѕРіРѕ членика РІ РґСЂСѓРіРѕР№. Р’ ситовидной трубке ситовидные пластинки располагаются через определенные промежутки, соответствующие отдельным членикам этой трубки.  [13]

РџРѕРјРёРјРѕ ситовидных пластинок, ситовидные трубки обладают РґСЂСѓРіРёРјРё структурными особенностями, которые также должны приниматься РІРѕ внимание ( СЃРј. след, разд.  [15]

Страницы:      1    2    3    4    5

Ссылка на основную публикацию
Adblock
detector