Что такое микробиология? Что такое биотехнология?

Биотехнология — комплексная наука, разрабатывающая способы получения необходимых человеку веществ с помощью живых организмов.

Биотехнологические процессы давно используются в производстве хлеба, молочнокислых продуктов, вина, пива.

Объекты биотехнологиимикроорганизмы (бактерии, цианобактерии, грибы, протисты). Их особенности: короткий жизненный цикл, интенсивное размножение, большое разнообразие биохимических свойств, лёгкое получение мутантов.

В селекции микроорганизмов основными методами являются индуцированный мутагенез и отбор групп сходных по генотипу клеток с заданными свойствами.

В промышленных масштабах используется такое направление биотехнологии, как микробиологический синтез.

Микробиологический синтез — получение с помощью микроорганизмов ценных веществ: витаминов, белков, ферментов, лекарств и т. д.

Например, так получают незаменимую аминокислоту лизин (её добавляют в корм животных), антибиотики, уксусную и лимонную кислоты.

В селекции широко используется клеточная инженерия.

Клеточная инженерия — это размножение клеток живого организма в искусственных условиях.

Клетки выращивают на питательной среде, они растут и делятся, формируя культуру ткани.

Культура тканей — это фрагменты органов, тканей или клетки, выращиваемые вне организма.

Из растительных клеток можно вырастить целый организм. С помощью этого метода получают и размножают ценные сорта растений.

Что такое микробиология? Что такое биотехнология?

Рис. (1). В лаборатории

К методам клеточной инженерии относится также гибридизация, т. е. слияние клеток. Разработаны методы гибридизации половых и соматических клеток.

Гибридизация половых клеток используется при невозможности естественного оплодотворения — сначала «в пробирке» проводят оплодотворение яйцеклетки, а затем её имплантируют в материнский организм. Этот приём применяется в ЭКО (экстракорпоральное оплодотворение) — технологии преодоления бесплодия у людей, с помощью которой на свет уже появилось много детей.

Гибридизация соматических клеток позволяет создавать новые формы живых организмов. 

Получение гибридных клеток, совмещающих свойства лимфоцитов и раковых клеток, позволяет быстро получить антитела.

Генная инженерия — искусственная перестройка генома.

Пример:

добавление в ДНК кишечной палочки соответствующих человеческих генов дало возможность получать с помощью этой бактерии гормоны инсулин и соматотропин, необходимые в медицине.

Что такое микробиология? Что такое биотехнология?

Рис. (2). Введение гена в ДНК бактерии

Организмы, в геном которых встроены гены других видов, называют трансгенными, или генетически модифицированными (ГМО).

Что такое микробиология? Что такое биотехнология?

Рис. (3). ГМО продукт

Источники:

Рис. 1. В лаборатории. https://www.shutterstock.com/ru/image-photo/plant-tissue-culture-growing-bottle-on-567593626

Рис. 2. Введение гена в ДНК бактерии. https://image.shutterstock.com/image-illustration/bacterial-plasmid-small-dna-molecule-600w-794881564

Рис. 3. ГМО продукт. https://image.shutterstock.com/image-photo/flesh-kiwi-cut-ripe-orange-600w-58695538

Основные виды биотехнологий и практическое их применение

Что собой представляет наука биотехнология?

Определение биотехнологии

Определение 1

Биотехнология кратко — дисциплина, изучающая возможности применения живых организмов и их систем в решении различных технологических задач, в том числе создания живых организмов с определенными свойствами при помощи генной инженерии.

Биотехнологию в рефератах представляют как понятие, охватывающее широкий спектр процедур, направленных на модификацию живых организмов в соответствии с целями человека.

Тысячелетиями люди пользуются биотехнологиями в сельском хозяйстве, производстве продуктов питания и медицине. Сам термин «биотехнологии» был введен венгерским инженером, которого звали Карл Эреки. Произошло это в 1917 году.

История биотехнологии

Ранняя биотехнология позволила фермерам выбрать и развести культуры, которые сегодня дают самые большие урожаи: в достаточном для поддержания растущего населения количестве.

Так как посевы и поля становились все более объемными, возникли проблемы с их поддержанием.

Тогда обнаружили, что отдельные организмы и продукты их переработки вполне эффективно оплодотворяют, восстанавливают азот и борются с вредителями.

На протяжении развития сельского хозяйства, фермеры непреднамеренно изменяли генетику культур, вводя их в новые условия и разводя вместе с другими растениями. Все это было первыми формами биотехнологий.

Долгое время люди также пользовались селекцией с целью улучшить производство сельскохозяйственных культур и домашнего скота, чтобы все это потом можно было употреблять в пищу.

Селекция основывалась на том, что организмы, обладающие желательными характеристиками, сопрягались с такими же организмами.

Пример 1

Так получили самые сладкие и крупные зерновые культуры.

Начало 20 века стало временем углубления в основы микробиологии, что привело к изучению различных способов производства. Хаим Вейцман в 1917 году первым применил микробиологическую культуру в промышленном процессе — в производстве кукурузного крахмала.

Замечание 1

С развитием биотехнологий связана разработка антибиотиков.

В 1928 году Александр Флеминг открыл плесень Penicillium.

Виды биотехнологий

Существует несколько видов биотехнологий:

  • биоинженерия;
  • биомедицина;
  • наномедицина;
  • биофармакология;
  • биоинформатика;
  • бионика;
  • генная инженерия.

Нужна помощь преподавателя? Опиши задание — и наши эксперты тебе помогут!

Практическое применение биотехнологий

Есть 4 крупные промышленные области, в которых активно применяются наработки биотехнологии:

  1. Медицина.
  2. Сельское хозяйство.
  3. Химическая промышленность.
  4. Сельская промышленность.

Биотехнологии также используют чтобы утилизировать и обрабатывать отходы, очищать загрязненные промышленной деятельностью участки (это называется биоремедизация), создавать биологическое оружие.

Медицина

Биотехнологии в медицине используются с целью поиска и производства лекарств, фармакогеномике, а также в генетическом тестировании — генетическом скрининге.

Фармакогеномика представляет собой объединение фармакологии и геномики. Это технология, которая занимается анализом влияние генетического состава на реакцию индивидуума на тот или иной лекарственный препарат.

Замечание 2

Заметно значение биотехнологии в открытии и производстве традиционных малых молекул лекарств, в том числе препаратов — продуктов биотехнологии (биологических препаратов).

Сельское хозяйство

Биотехнологии в сельском хозяйстве стали причиной появления генетически модифицированных сельскохозяйственных культур. Это биотехнологические культуры — растения, используемые в сельском хозяйстве, ДНК которых модифицирована при помощи методов генной инженерии.

Такие продовольственные культуры отличаются устойчивостью к определенным вредителям, болезням, стрессовым условиям окружающей среды, устойчивостью к различным химическим обработкам.

Химическая промышленность

1917 год был примечателен еще и тем, что в это время Хаим Вейцман в Великобритании применил бактерии Clostridium acetobutylicum чтобы получить ацетон. В то время ацетон был стратегически важным продуктом.

Пищевая промышленность

Различные молочные культуры молочнокислой ферментации дают возможность получить йогурт, квашеную капусту и пр. Также на биологических процессах основаны другие традиционные технологии: производство сыра, хлеба.

32. Что такое биотехнология

Биотехноло́гия
— дисциплина, изучающая возможности
использования живых организмов, их
систем или продуктов их жизнедеятельности
для решения технологических задач, а
также возможности создания живых
организмов с необходимыми свойствами
методом генной инженерии.
33.
Главные направления биотехнологии

А)
производство биологически активных
соединений (ферментов, витаминов,
гормональных препаратов), лекарственных
препаратов (антибиотиков, вакцин,
сывороток, высокоспецифичных антител
и др.), а также белков, аминокислот,
используемых в качестве кормовых
добавок;

Б)
применение биологических методов борьбы
с загрязнением окружаю-щей среды
(биологическая очистка сточных вод,
загрязнений почвы и т. и.) и для защиты
растений от вредителей и болезней;

В) создание новых полезных штаммов
микроорганизмов, сортов растений, пород
животных и т. п.

34. Разделы биотехнологии

  • В
    современной биотехнологии в соответствии
    со спецификой сфер ее при-менения
    целесообразно выделить в качестве
    самостоятельных разделов следующие:

  • Промышленная микробиология.

  • Технологическая биоэнергетика.

  • Биогидрометаллургия.

  • Экологическая биотехнология.

  • Медицинская биотехнология.

  • Сельскохозяйственная биотехнология.

  • Инженерная энзимология.

  • Клеточная и генетическая инженерия

35. Промышленная микробиология

Промышленная
микробиология(или техническая
микробиология) – это наука о получении
различных целевых продуктов на основе
жизнедеятельности микроорганизмов.

В
настоящее время она представляет собой
также самостоятельную и наиболее
крупнотоннажную отрасль современной
промышленной биотехнологии.

В
различных процессах промышленной
микробиологии получают около 200
соединений, обладающих коммерческой
ценностью.

Важнейшие среди них: алкалоиды,
аминокислоты, антибиотики, антиметаболиты,
антиоксиданты, белки, витамины, гербициды,
инсектициды, коферменты, липиды,
нуклеиновые кислоты, органические
кислоты, пигменты, ПАВ, полисахариды,
полиоксиалканоаты, противоопухолевые
агенты, растворители, сахара, стерины,
ферменты, нуклеотиды, нуклеозиды,
эмульгаторы.

36.Технологическая биоэнергетика

Биоэнергетика

это новая отрасль народного хозяйства,
которая связывает решение проблем
получения топлива из биомассы и охраны
окружающей среды.

Получение
спирта.

Получение этилового спирта на основе
дрожжей известно с древних времен.

Перспективы
использования низших спиртов (метанола,
этанола), также ацетона и других
растворителей в качестве горючего для
двигателей внутреннего сгорания вызвали
в последние годы большой интерес к
возможности их крупномасштабного
получения в микробиологических процессах
с использованием различного растительного
сырья.

Этиловый
спирт является экологическим чистым
горючим для двигателей внутреннего
сгорания. Сырьем для процессов спиртового
брожения могут быть разнообразные
биомассы, включая крахмалсодержащие
(зерно, картофель), сахаросодержащие
материалы (меласса, отходы
деревоперерабатывающей промышленности),
а также биомасса специально выращенных
пресноводных и морских растений и
водорослей.

Жидкие
углеводороды.
Удалось
установить способность к синтезу жидких
углеводородов у водорослей и бактерий.
Было показано, что у зеленой водоросли
Botryococcusbrauniiсодержание
углеводородов может составлять от 15 до
75 % от суммы липидов. Эта одноклеточная
зеленая водоросль обитает в водоемах
с пресной и солоноватой водой в умеренных
и тропических широтах.

Глава 27 Микробиология — основа новейших технологий

  • Глава 27
  • Микробиология — основа новейших технологий
  • Всякая наука черпает свои права на существование в возможности так или иначе оказаться полезной человечеству в качестве науки прикладной.
  • В. Оствальд

Прошло уже достаточно времени с тех пор, как человек начал последовательно и настойчиво исследовать природу.

Каждое новое крупное открытие знаменует собой новую эпоху и вооружает человека новыми возможностями для еще более полного подчинения природы его нуждам.

Успехи атомной физики, физики полупроводников и химии полимеров на какое-то время затмили свет знаний, исходящий от исследований живых объектов. Изучение принципов их устройства и функционирования, которые до недавнего времени были уделом рассеянных чудаков, со временем стало приносить свои плоды.

Вообще следует заметить, что в науке и технике по мере более глубокого проникновения в суть вещей и явлений наблюдается все большее приближение к природным «техническим устройствам».

И если пока технический уровень изделий, изготовленных человеком, или эффективность технологических процессов все же отстают от природных аналогов, то поневоле напрашивается мысль использовать их в готовом виде.

В этом, возможно, и заключается основной смысл биотехнологических подходов.

Человечество давно использует для своих нужд оба биологических царства — растительное и животное. Сейчас наступило время, когда мы вплотную подошли к тому, чтобы извлекать пользу из всех возможностей третьего биологического царства — царства микроорганизмов.

Читайте также:  Дофамин - инструкция по применению, аналоги, отзывы и формы выпуска (концентрат или порошок для приготовления раствора для инъекций и инфузий в ампулах) препарата для лечения шока и сердечной недостаточности у взрослых, детей и при беременности

На первых этапах его освоения человечество следовало проторенной дорогой, копируя опыт использования возможностей мира растений и животных и получая главным образом продукты питания.

Со времен Левенгука до нашего времени микробиология прошла большой путь: от не имеющих никакого практического применения наблюдений за таинственным миром «анималькулей» до получения с помощью микроорганизмов различных веществ, производство которых достигает сотен и тысяч тонн.

Но это только первый этап освоения возможностей царства микроорганизмов, которые обладают значительно б?льшими возможностями: с их помощью можно попытаться разработать не имеющие аналогов технологии. Ниже мы рассмотрим некоторые возможности микроорганизмов, которые открыли новую эру — эру биотехнологии.

Следует отметить, что имеются в виду не только микробиологические способы получения в больших количествах различных веществ. Биотехнология — это базовая основа новейших технологий, остро необходимых человечеству уже сейчас.

Какие же требования к ним предъявляются? Прежде всего, они должны быть экологически чистыми или безотходными, энергосберегающими и, наконец, экономически выгодными.

Давайте же вместе посмотрим, удовлетворяют ли этим требованиям некоторые прикладные направления микробиологии и биотехнологии.

Начнем с энергетики. В течение длительного времени человек получал энергию за счет сжигания древесины. Однако этот путь уже не мог удовлетворить его растущие энергетические потребности. Проблема была решена за счет ископаемого топлива, ставшего в настоящее время одним из основных источников энергии.

В главе, посвященной геологии, мы останавливались на биотехнических приемах использования микроорганизмов при разработке месторождений нефти и угля. Но ископаемого топлива становится все меньше.

За каких-то 200 лет эффективного использования его запасы еще не исчерпаны, но оставшееся количество заставляет всерьез задуматься о других источниках энергии.

И здесь на помощь приходят микробиологические способы получения спиртов из возобновляемых источников сырья (подробно этот вопрос освещен в главе 26 «Микробы вытесняют бензин»).

Здесь хотелось бы добавить, что этот путь доведен до уровня промышленной эксплуатации, что позволило, например, Бразилии начиная с 1991 г. ежегодно экономить $3,5 млрд за счет снижения импорта нефти и нефтепродуктов. Это яркий пример, иллюстрирующий экономические возможности биотехнологии.

Использование метанола и этанола в качестве моторного топлива или добавок к нему иллюстрирует существенный вклад микробиологии в решение энергетической проблемы.

Однако более перспективными, по всей вероятности, являются биотехнологические способы производства энергии, основанные на получении водорода из возобновляемых источников и его утилизации в биотопливных элементах, обладающих высоким КПД.

Еще одним основанием для такой точки зрения является экологическая чистота водородной энергетики.

Биотехнология позволяет одновременно решать как энергетические, так и экологические проблемы. Так, микробиологическая переработка органических отходов, решая задачу охраны окружающей среды, позволяет получать биогаз, не уступающий по калорийности природному.

Получение этого газа, образующегося при метановом брожении органических отходов, не требует ни разведки, ни бурения скважин, ни прокладки многокилометровых газопроводов. В результате стоимость биогаза оказывается ниже стоимости природного.

Кроме того, его производство, по крайней мере в обозримом будущем, обеспечено сырьевой базой, каковой являются органические отходы городов. Их общая масса, пригодная для производства этанола, только в США составляет около 1 млрд тонн.

Утилизация органических отходов микробиологическим способом и сама по себе экологически чиста, так как практически безотходна: получаемые отходы в виде шлама могут быть использованы как удобрения и, таким образом, включены в биологический цикл.

Однако не следует забывать, что сама микробиологическая промышленность является в свою очередь источником экологических загрязнений. Действительно, производство кормовых дрожжей только в нашей стране составляет 1,5 млн тонн. Естественно, что при таких масштабах довольно велики и отходы. Культуральная жидкость после отделения дрожжей содержит значительное количество минеральных веществ, витаминов и продуктов метаболизма. Как их использовать? Каковы вообще пути создания экологически чистых или безотходных производств?

Здесь опять образцом для подражания служит живая природа. Рассматривая схему метаболических путей (последовательность превращений веществ в клетке), мы видим, что одно вещество является субстратом для определенной ферментативной реакции, а вновь полученный продукт, в свою очередь, служит субстратом для последующей.

Аналогичная последовательность должна быть создана и в системе безотходного производства. Отходы одного производства должны служить сырьем (основой) для следующего, и так до тех пор, пока в результате не получатся вещества, не обладающие негативным воздействием на экологическую ситуацию.

Однако создать такую же ферментативную «мельницу» для разрушения экологически опасных субстратов до углекислого газа и воды довольно затруднительно. Можно, правда, попытаться использовать в этих целях различные группы микроорганизмов, биохимическая активность которых последовательно соединяется в процессы, проходящие в биохимической «мельнице» клетки.

Так, отходы, получаемые при культивировании дрожжей и остающиеся после их сепарации, можно использовать для культивирования других микроорганизмов, а отходы, остающиеся после этого (второго) культивирования, послужат субстратом для метанового брожения. И, наконец, отходы метанового брожения тоже могут быть с успехом утилизированы, правда, уже не для выращивания микроорганизмов.

При добавлении в бетон метановой бражки в количестве 0,3 % от массы замеса его прочность увеличивается на 40 %, на 12 % уменьшается расход воды, возрастает морозоустойчивость и увеличивается расплыв конуса — важнейшая характеристика бетона.

Таким образом, есть способ избавиться от отходов различных брожений, используя их в качестве пластификаторов бетона.

Для этих целей можно применять мелассу, последрожжевую барду и уже описанную выше метановую бражку.

Эти отходы микробиологического производства, будучи замешенными в бетон, теряют экологически негативное влияние и, кроме того, придают ему дополнительные положительные качества.

Не менее существенна роль микробиологии в борьбе с антропогенными загрязнениями (см. главу 15 «Всеядные»).

В Англии удалось выделить микроорганизмы, превращающие полихлорвиниловые пленки в углекислый газ. Для этой цели не только выделяются или конструируются методами генетической инженерии соответствующие микроорганизмы, но и предлагаются новые биотехнологические решения.

Так, шведские ученые решили еще при производстве пластмасс вводить в них находящиеся в состоянии анабиоза микроорганизмы, которые затем через определенное время или в зависимости от изменившихся окружающих условий (температуры, влажности, кислотности) активизируются и, интенсивно развиваясь, разрушают пластмассу, которая служила им временным убежищем. Уже сейчас в Европе используют пластиковые пакеты, на каждом из которых есть подпись: Се sac est 100 % oxo-biod?gradable. SA dur?e de vie est limit?e dans le temps. Apr?s d?gradation, il devient bio-assimilable. (Этот пакет полностью биодеградабельный. Длительность его жизни ограничена во времени. После разрушения он ассимилируется.)

Замена существующих технологий на биотехнологические предполагает максимально приблизить эти процессы по уровню безотходности к биологическим, где «отходом» являются углекислый газ и вода.

Биотехнология — это не только новые способы производства, но и качественно новые возможности обеспечения предприятий необходимыми средствами контроля. Например, аналитические возможности ферментативных датчиков таковы, что не требуется практически никакой подготовки анализируемого образца.

Высочайшая избирательность позволяет проводить количественный анализ почти мгновенно, что дает возможность осуществлять действительно оперативный контроль и управление технологическими процессами.

Устройство для анализа — так называемый «биосенсор», или ферментативный электрод, представляет собой интегральную схему с нанесенной пленкой, содержащей определенный фермент, при взаимодействии которого с исследуемой жидкостью изменяются электрические характеристики схемы, которые могут быть выведены на индикаторный прибор или непосредственно использованы в качестве управляющего сигнала.

Естественно, что оперативное получение информации о характере течения технологического процесса способствует повышению эффективности и является одной из отличительных черт биотехнологии.

Однако было бы неправильно думать, что новые технологии базируются в основном на использовании биохимической активности микроорганизмов.

Не менее важным в создании новых технологий может оказаться использование биологических мембран, роль которых в жизнедеятельности живых организмов и микроорганизмов трудно переоценить.

Если бы удалось создать и использовать в технологии методы разделения веществ с использованием биологических мембран или их аналогов, то это позволило бы в значительной степени обновить и существенно интенсифицировать способы разделения веществ, снизив при этом энергетические затраты на проведение этих процессов.

Более того, если бы удалось решить вопросы управления проницаемостью таких мембран (что и происходит в живой клетке), то на базе полупроницаемых мембран можно было бы создавать системы, аналогичные гибким технологическим системам в промышленности.

Пока методов работы с биомембранами не разработано, ведь сначала должны быть предложены способы их выделения из нативных клеток, а также стабилизации.

Исследования пленочного роста микроорганизмов позволили обнаружить не только удивительные механические свойства этих пленок (об этом упоминалось в главе 5), но и особенности контактов микроорганизмов друг с другом.

Это позволило ученым из Массачусетского технологического университета увеличить мощность топливных элементов в несколько раз. При этом пленка функционировала как единая токопроводящая система, объединяющая индивидуальные потоки электронов, производимые отдельными клетками.

Однако уже работают мембраны — аналоги живых мембран. Можно ли отнести эти технологии к биотехнологии? И да и нет. Но в конце концов неважно, как мы назовем эти новейшие технологии разделения, — главное, что они используют принципы, близкие к биологическим, и на основании этого (хотя и условно) могут быть отнесены к биотехнологическим процессам.

Читайте также:  Тинидазол - инструкция по применению, отзывы, аналоги и формы выпуска (таблетки 500 мг) препарата для лечения лямблиоза, трихомониаза и амебиаза у взрослых, детей и при беременности и взаимодействие с алкоголем

Помимо возможного использования биомембран реальный интерес представляет применение внутриклеточных органелл микробной клетки, в частности, магнитосом. По сути они представляют собой маленькие магнитики, образующиеся внутри бактериальной клетки. В последнее время возникла потребность в магнитоуправляемых частицах для использования в диагностике и при лечении некоторых заболеваний.

Так, присоединение к антителам магнитных частиц вместо молекул флуоресцентных красителей примерно в 100 (!) раз повышает чувствительность методов выявления специфических белков, используемых для диагностики.

Кроме того, магнитные частицы применяются для гипертермии. Суть этого метода в том, что микромагниты можно с помощью магнитов или под действием магнитных полей направлять в нужный орган и удерживать там, а облучая их высокочастотным электромагнитным полем, вызывать локальный точечный нагрев, приводящий к гибели окружающих магнит клеток раковой опухоли.

Производство магнитных частиц одинаковой формы и размера — достаточно сложная задача, особенно если они измеряются нанометрами. И это только часть задачи: нужно еще покрыть каждую частицу белковой или углеводной оболочкой, к которой можно будет «привязать» химическими связями антитело.

Между тем есть другой, микробиологический путь получения таких магнитных частиц.

Известно, что некоторые бактерии (такие как, например, Magnetospirillum magneticum) способны извлекать железо из окружающей среды и синтезировать магнитные частицы, причем со значительно меньшим разбросом по величине и форме, чем при физико-химическом синтезе, и, кроме того, уже покрытые биологической мембраной. Вдобавок ко всему возможности генетической инженерии позволяют осуществлять синтез магнитных частиц с уже прикрепленными к ним антителами.

Таким образом, биотехнология позволяет получать магнитные частицы с различными антителами и использовать их для точной «адресной» доставки лекарств, радионуклидов или «тепловых бомб» к пораженным органам и даже клеткам и осуществить наконец мечту Пауля Эрлиха о «магической пуле».

Биотехнология может умело извлекать пользу не только из различных свойств микроорганизмов, но из самого факта их широкого распространения.

Рассмотрим один из таких примеров. Известно, что растения в принципе способны выдерживать снижение температуры до -6 °C. Однако в действительности серьезные поражения растительных тканей листьев, например, апельсиновых деревьев наступают при минусовых температурах, близких к нулю.

Дело в том, что на поверхности листьев образуются кристаллы льда, разрушающие их ткань. Микробиологи из Калифорнийского и Колорадского университетов, изучая вопросы морозоустойчивости цитрусовых, установили, что центрами кристаллообразования льда служат бактерии Erwinia herbicola и Pseudomonas viringa.

Если бы удалось убрать с поверхности листьев эти бактерии, то удалось бы сократить довольно значительные потери от заморозков. Ученые выделили вирусы, которые, интенсивно размножаясь, лизируют указанные бактерии, и растения переживают период похолодания со значительно меньшими поражениями, конечно, если температура не опускается ниже -6 °C.

По расчетам ученых, можно избежать ежегодных миллиардных убытков при использовании этих вирусов. Обработка ими растений уже широко применяется.

Интересно использование в качестве инсектицида мицелия грибов Mefarhizium anisopliae. Он продуцирует вещества, привлекающие насекомых. Поедая мицелий, они заражаются спорами гриба, который, прорастая в теле насекомых, убивает их. Это метод имеет огромные преимущества перед традиционными инсектицидами как в экономическом, так и в экологическом аспектах.

Заканчивая эту главу, следует еще раз подчеркнуть, что биотехнология, и это очевидно, в ближайшее время окажет серьезное воздействие на решение многих технических проблем и на проведение технологических процессов.

Изумительное совершенство и тончайшая согласованность работы уникальных и, увы, пока неповторимых механизмов получения энергии, кодирования и декодирования информации, проведения сложнейших химических синтезов с участием созданных для этой цели катализаторов-ферментов позволяет микробной клетке опережать даже новейшие достижения энергетики, вычислительной техники и химической технологии.

В приведенных нами примерах использования биотехнологических приемов так или иначе переплетаются проблемы экономики и энергетики, энергетики и экологии, экологии и экономики. Поневоле напрашивается вывод, что именно биотехнология является тем мечом, с помощью которого можно разрубить гордиев узел, в который эти проблемы переплелись в современном мире.

Пройдет еще несколько лет, и во многих областях техники появятся новинки, в основе которых будут лежать биологические системы. Мы стоим на пороге эпохи биотехники и биотехнологии и одной ногой уже через него перешагнули.

Данный текст является ознакомительным фрагментом.

Микробиологическая промышленность

Содержание статьи

Микробиологическая промышленность, производство какого-либо продукта с помощью микроорганизмов. Осуществляемый микроорганизмами процесс называют ферментацией; емкость, в которой он протекает, называется ферментером (или биореактором).

Процессы, протекающие при участии бактерий, дрожжей и плесневых грибов, человек применял сотни лет для получения пищевых продуктов и напитков, обработки текстиля и кожи, но участие в этих процессах микроорганизмов было четко показано только в середине 19 в.

В 20 в. промышленность использовала все разнообразие замечательных биосинтетических способностей микроорганизмов, и теперь ферментация занимает центральное место в биотехнологии.

С ее помощью получают разнообразные химикалии высокой степени чистоты и лекарственные препараты, изготавливают пиво, вино, ферментированные пищевые продукты.

Во всех случаях процесс ферментации разделяется на шесть основных этапов.

Создание среды

Прежде всего необходимо выбрать соответствующую культуральную среду. Микроорганизмы для своего роста нуждаются в органических источниках углерода, подходящем источнике азота и различных минеральных веществах.

При производстве алкогольных напитков в среде должны присутствовать осоложенный ячмень, выжимки из фруктов или ягод. Например, пиво обычно делают из солодового сусла, а вино – из виноградного сока.

Помимо воды и, возможно, некоторых добавок эти экстракты и составляют ростовую среду.

Среды для получения химических веществ и лекарственных препаратов намного сложнее. Чаще всего в качестве источника углерода используют сахара и другие углеводы, но нередко масла и жиры, а иногда углеводороды.

Источником азота обычно служат аммиак и соли аммония, а также различные продукты растительного или животного происхождения: соевая мука, соевые бобы, мука из семян хлопчатника, мука из арахиса, побочные продукты производства кукурузного крахмала, отходы скотобоен, рыбная мука, дрожжевой экстракт.

Составление и оптимизация ростовой среды являются весьма сложным процессом, а рецепты промышленных сред – ревниво оберегаемым секретом.

Стерилизация

Среду необходимо стерилизовать, чтобы уничтожить все загрязняющие микроорганизмы. Сам ферментер и вспомогательное оборудование тоже стерилизуют. Существует два способа стерилизации: прямая инжекция перегретого пара и нагревание с помощью теплообменника.

Желаемая степень стерильности зависит от характера процесса ферментации. Она должна быть максимальной при получении лекарственных препаратов и химических веществ. Требования же к стерильности при производстве алкогольных напитков менее строгие.

О таких процессах ферментации говорят как о «защищенных», поскольку условия, которые создаются в среде, таковы, что в них могут расти только определенные микроорганизмы.

Например, при производстве пива ростовую среду просто кипятят, а не стерилизуют; ферментер также используют чистым, но не стерильным.

Получение культуры

Прежде чем начать процесс ферментации, необходимо получить чистую высокопродуктивную культуру. Чистые культуры микроорганизмов хранят в очень небольших объемах и в условиях, обеспечивающих ее жизнеспособность и продуктивность; обычно это достигается хранением при низкой температуре.

Ферментер может вмещать несколько сотен тысяч литров культуральной среды, и процесс начинают, вводя в нее культуру (инокулят), составляющей 1–10% объема, в котором будет идти ферментация.

Таким образом, исходную культуру следует поэтапно (с пересеваниями) растить до достижения уровня микробной биомассы, достаточного для протекания микробиологического процесса с требуемой продуктивностью.

Совершенно необходимо все это время поддерживать чистоту культуры, не допуская ее заражения посторонними микроорганизмами. Сохранение асептических условий возможно лишь при тщательном микробиологическом и химико-технологическом контроле.

Рост в промышленном ферментере (биореакторе)

Промышленные микроорганизмы должны расти в ферментере при оптимальных для образования требуемого продукта условиях.

Эти условия строго контролируют, следя за тем, чтобы они обеспечивали рост микроорганизмов и синтез продукта.

Конструкция ферментера должна позволять регулировать условия роста – постоянную температуру, pH (кислотность или щелочность) и концентрацию растворенного в среде кислорода.

Обычный ферментер представляет собой закрытый цилиндрический резервуар, в котором механически перемешиваются среда и микроорганизмы. Через среду прокачивают воздух, иногда насыщенный кислородом. Температура регулируется с помощью воды или пара, пропускаемых по трубкам теплообменника.

Такой ферментер с перемешиванием используется в тех случаях, когда ферментативный процесс требует много кислорода. Некоторые продукты, напротив, образуются в бескислородных условиях, и в этих случаях используются ферментеры другой конструкции.

Так, пиво варят при очень низких концентрациях растворенного кислорода, и содержимое биореактора не аэрируется и не перемешивается.

Некоторые пивовары до сих пор традиционно используют открытые емкости, но в большинстве случаев процесс идет в закрытых неаэрируемых цилиндрических емкостях, сужающихся книзу, что способствует оседанию дрожжей.

В основе получения уксуса лежит окисление спирта до уксусной кислоты бактериями Acetobacter. Процесс ферментации протекает в емкостях, называемых ацетаторами, при интенсивной аэрации. Воздух и среда засасываются вращающейся мешалкой и поступают на стенки ферментера.

Выделение и очистка продуктов

По завершении ферментации в бульоне присутствуют микроорганизмы, неиспользованные питательные компоненты среды, различные продукты жизнедеятельности микроорганизмов и тот продукт, который желали получить в промышленном масштабе. Поэтому данный продукт очищают от других составляющих бульона.

Читайте также:  Феминал для лечения осложнений менопаузного периода или климакса у женщин: формы выпуска (капсулы или таблетки 160 мг), инструкция по применению и отзывы, аналоги

При получении алкогольных напитков (вина и пива) достаточно просто отделить дрожжи фильтрованием и довести до кондиции фильтрат. Однако индивидуальные химические вещества, получаемые путем ферментации, экстрагируют из сложного по составу бульона.

Хотя промышленные микроорганизмы специально отбираются по своим генетическим свойствам так, чтобы выход желаемого продукта их метаболизма был максимален (в биологическом смысле), концентрация его все же мала по сравнению с той, которая достигается при производстве на основе химического синтеза.

Поэтому приходится прибегать к сложным методам выделения – экстрагированию растворителем, хроматографии и ультрафильтрации.

Переработка и ликвидация отходов ферментации

При любых промышленных микробиологических процессах образуются отходы: бульон (жидкость, оставшаяся после экстракции продукта производства); клетки использованных микроорганизмов; грязная вода, которой промывали установку; вода, применявшаяся для охлаждения; вода, содержащая в следовых количествах органические растворители, кислоты и щелочи.

Жидкие отходы содержат много органических соединений; если их сбрасывать в реки, они будут стимулировать интенсивный рост естественной микробной флоры, что приведет к обеднению речных вод кислородом и созданию анаэробных условий. Поэтому отходы перед удалением подвергают биологической обработке, чтобы уменьшить содержание органического углерода.

Промышленные микробиологические процессы

Промышленные микробиологические процессы можно разбить на 5 основных групп: 1) выращивание микробной биомассы; 2) получение продуктов метаболизма микроорганизмов; 3) получение ферментов микробного происхождения; 4) получение рекомбинантных продуктов; 5) биотрансформация веществ.

Микробная биомасса

Микробные клетки сами по себе могут служить конечным продуктом производственного процесса.

В промышленном масштабе получают два основных типа микроорганизмов: дрожжи, необходимые для хлебопечения, и одноклеточные микроорганизмы, используемые как источник белков, которые можно добавлять в пищу человека и животных.

Пекарские дрожжи выращивали в больших количествах с начала 20 в. и использовали в качестве пищевого продукта в Германии во время Первой мировой войны.

Однако технология производства микробной биомассы как источника пищевых белков была разработана только в начале 1960-х годов. Ряд европейских компаний обратили внимание на возможность выращивания микробов на таком субстрате, как углеводороды, для получения т.н. белка одноклеточных организмов (БОО).

Технологическим триумфом было получение продукта, добавляемого в корм скоту и состоящего из высушенной микробной биомассы, выросшей на метаноле. Процесс шел в непрерывном режиме в ферментере с рабочим объемом 1,5 млн. л.

Однако в связи с ростом цен на нефть и продукты ее переработки этот проект стал экономически невыгодным, уступив место производству соевой и рыбной муки. К концу 80-х годов заводы по получению БОО были демонтированы, что положило конец бурному, но короткому периоду развития этой отрасли микробиологической промышленности.

Более перспективным оказался другой процесс – получение грибной биомассы и грибного белка микопротеина с использованием в качестве субстрата углеводов.

Продукты метаболизма

После внесения культуры в питательную среду наблюдается лаг-фаза, когда видимого роста микроорганизмов не происходит; этот период можно рассматривать как время адаптации.

Затем скорость роста постепенно увеличивается, достигая постоянной, максимальной для данных условий величины; такой период максимального роста называется экспоненциальной, или логарифмической, фазой. Постепенно рост замедляется, и наступает т.н.

стационарная фаза. Далее число жизнеспособных клеток уменьшается, и рост останавливается.

Следуя описанной выше кинетике, можно проследить за образованием метаболитов на разных этапах. В логарифмической фазе образуются продукты, жизненно важные для роста микроорганизмов: аминокислоты, нуклеотиды, белки, нуклеиновые кислоты, углеводы и т.д. Их называют первичными метаболитами.

Многие первичные метаболиты представляют значительную ценность.

Так, глутаминовая кислота (точнее, ее натриевая соль) входит в состав многих пищевых продуктов; лизин используется как пищевая добавка; фенилаланин является предшественником заменителя сахара аспартама.

Первичные метаболиты синтезируются природными микроорганизмами в количествах, необходимых лишь для удовлетворения их потребностей. Поэтому задача промышленных микробиологов состоит в создании мутантных форм микроорганизмов – сверхпродуцентов соответствующих веществ.

В этой области достигнуты значительные успехи: например, удалось получить микроорганизмы, которые синтезируют аминокислоты вплоть до концентрации 100 г/л (для сравнения – организмы дикого типа накапливают аминокислоты в количествах, исчисляемых миллиграммами).

В фазе замедления роста и в стационарной фазе некоторые микроорганизмы синтезируют вещества, не образующиеся в логарифмической фазе и не играющие явной роли в метаболизме. Эти вещества называют вторичными метаболитами. Их синтезируют не все микроорганизмы, а в основном нитчатые бактерии, грибы и спорообразующие бактерии.

Таким образом, продуценты первичных и вторичных метаболитов относятся к разным таксономическим группам.

Если вопрос о физиологической роли вторичных метаболитов в клетках-продуцентах был предметом серьезных дискуссий, то их промышленное получение представляет несомненный интерес, так как эти метаболиты являются биологически активными веществами: одни из них обладают антимикробной активностью, другие являются специфическими ингибиторами ферментов, третьи – ростовыми факторами, многие обладают фармакологической активностью. Получение такого рода веществ послужило основой для создания целого ряда отраслей микробиологической промышленности. Первым в этом ряду стало производство пенициллина; микробиологический способ получения пенициллина был разработан в 1940-х годах и заложил фундамент современной промышленной биотехнологии.

Фармацевтическая промышленность разработала сверхсложные методы скрининга (массовой проверки) микроорганизмов на способность продуцировать ценные вторичные метаболиты.

Вначале целью скрининга было получение новых антибиотиков, но вскоре обнаружилось, что микроорганизмы синтезируют и другие фармакологически активные вещества. В течение 1980-х годов было налажено производство четырех очень важных вторичных метаболитов.

Это были: циклоспорин – иммунодепрессант, используемый в качестве средства, предотвращающего отторжение имплантированных органов; имипенем (одна из модификаций карбапенема) – вещество с самым широким спектром антимикробного действия из всех известных антибиотиков; ловастатин – препарат, снижающий уровень холестерина в крови; ивермектин – антигельминтное средство, используемое в медицине для лечения онхоцеркоза, или «речной слепоты», а также в ветеринарии.

Ферменты микробного происхождения

В промышленных масштабах ферменты получают из растений, животных и микроорганизмов. Использование последних имеет то преимущество, что позволяет производить ферменты в огромных количествах с помощью стандартных методик ферментации.

Кроме того, повысить продуктивность микроорганизмов несравненно легче, чем растений или животных, а применение технологии рекомбинантных ДНК позволяет синтезировать животные ферменты в клетках микроорганизмов. Ферменты, полученные таким путем, используются главным образом в пищевой промышленности и смежных областях.

Синтез ферментов в клетках контролируется генетически, и поэтому имеющиеся промышленные микроорганизмы-продуценты были получены в результате направленного изменения генетики микроорганизмов дикого типа.

Рекомбинантные продукты

Технология рекомбинантных ДНК, более известная под названием «генная инженерия», позволяет включать гены высших организмов в геном бактерий. В результате бактерии приобретают способность синтезировать «чужеродные» (рекомбинантные) продукты – соединения, которые прежде могли синтезировать только высшие организмы.

На этой основе было создано множество новых биотехнологических процессов для производства человеческих или животных белков, ранее недоступных или применявшихся с большим риском для здоровья. Сам термин «биотехнология» получил распространение в 1970-х годах в связи с разработкой способов производства рекомбинантных продуктов.

Однако это понятие гораздо шире и включает любой промышленный метод, основанный на использовании живых организмов и биологических процессов.

Первым рекомбинантным белком, полученным в промышленных масштабах, был человеческий гормон роста. Для лечения гемофилии используют один из белков системы свертывания крови, а именно фактор VIII.

До того как были разработаны методы получения этого белка с помощью генной инженерии, его выделяли из крови человека; применение такого препарата было сопряжено с риском заражения вирусом иммунодефицита человека (ВИЧ).

Долгое время сахарный диабет успешно лечили с помощью инсулина животных. Однако ученые полагали, что рекомбинантный продукт будет создавать меньше иммунологических проблем, если его удастся получать в чистом виде, без примесей других пептидов, вырабатываемых поджелудочной железой.

Кроме того, ожидалось, что число больных диабетом будет со временем увеличиваться в связи с такими факторами, как изменения в характере питания, улучшение медицинской помощи беременным, страдающим диабетом (и как следствие – повышение частоты генетической предрасположенности к диабету), и, наконец, ожидаемое увеличение продолжительности жизни больных диабетом.

Первый рекомбинантный инсулин поступил в продажу в 1982, а к концу 1980-х годов он практически вытеснил инсулин животных.

Многие другие белки синтезируются в организме человека в очень небольших количествах, и единственный способ получать их в масштабах, достаточных для использования в клинике, – технология рекомбинантных ДНК. К таким белкам относятся интерферон и эритропоэтин.

Эритропоэтин совместно с миелоидным колониестимулирующим фактором регулирует процесс образования клеток крови у человека.

Эритропоэтин используется для лечения анемии, связанной с почечной недостаточностью, и может найти применение как средство, способствующее повышению уровня тромбоцитов, при химиотерапии раковых заболеваний.

Биотрансформация веществ

Микроорганизмы можно использовать для превращения тех или иных соединений в структурно сходные, но более ценные вещества.

Поскольку микроорганизмы могут проявлять свое каталитическое действие в отношении лишь каких-то определенных веществ, протекающие при их участии процессы более специфичны, чем чисто химические.

Наиболее известный процесс биотрансформации – получение уксуса в результате превращения этанола в уксусную кислоту. Но среди продуктов, образующихся при биотрансформации, есть и такие высокоценные соединения, как стероидные гормоны, антибиотики, простагландины. См. также ГЕННАЯ ИНЖЕНЕРИЯ.

Ссылка на основную публикацию
Adblock
detector