Плазматические клетки. Жировая ткань. Эндотелий. Эндотелиоциты.

Мы много лет боремся с эпидемией ожирения, поэтому ученые уделяют все больше внимания как избыточному весу, так и ожирению, а также составу и функциям самой жировой ткани.

Повышение интереса к этой теме связано с открытием в 1994 году лептина – гормона, секретируемого жировой тканью, который играет важную роль в регуляции аппетита.

После этого открытия жировая ткань больше не рассматривается как энергетический резервуар, по мнению ученых – это эндокринный орган.

Что такое жировая ткань

Жировая ткань – это самый большой запас энергии в организме человека, который активируется при увеличении потребности организма в энергии. Правильное количество жира составляет 12-20% для мужчин и 20-30% для женщин. 

Содержание жира у женщин физиологически выше – это совершенно нормально. С другой стороны, у тех, кто занимается спортом, могут быть более низкие значения, и это состояние не считается патологией.

Следует подчеркнуть, что жировая ткань характеризуется очень высокой пластичностью и может менять свое количество в зависимости от факторов окружающей среды, рациона питания и физической активности.

 

Плазматические клетки. Жировая ткань. Эндотелий. Эндотелиоциты.Процентное содержание жира в организме

Увеличение количества жира является следствием двух процессов: 

  • гипертрофии – то есть увеличения размера отдельных адипоцитов;
  • гиперплазии – то есть увеличения их количества.

Распределение жировой ткани непосредственно под кожей и между органами означает, что она выполняет изолирующую и амортизирующую функцию, защищая внутренние органы от механических повреждений.

Жировая структура довольно сложна. Эта гетерогенная ткань состоит из клеток, называемых адипоцитами, а также преадипоцитов, лейкоцитов, моноцитов, фибробластов, макрофагов, эндотелиальных клеток и стволовых клеток типа SVF – стромальная сосудистая фракция.

Как уже упоминалось, жировая ткань является активным эндокринным органом, который выделяет много разных веществ. Эти вещества, называемые адипокинами, выполняют разные биологические функции в организме человека:

  • регулирование чувства голода и сытости;
  • поддержание надлежащего энергетического баланса;
  • регуляция метаболизма углеводов и жиров;
  • обеспечение функционирования эндотелия сосудов;
  • влияние на воспалительные и иммунные процессы. 

У пациентов с лишним весом профиль секреции этих веществ изменяется, что, в свою очередь, инициирует патологические процессы, включая ожирение, резистентность к инсулину, развитие диабета и сердечно-сосудистые заболевания.

Плазматические клетки. Жировая ткань. Эндотелий. Эндотелиоциты.Жировая ткань в организме

Типы жировой ткани – белая и коричневая жировая ткань

Исследования показывают, что в организме человека есть 3 типа жира: 

  • белая жировая ткань (WAT);
  • коричневая жировая (BAT);
  • розовая жировая ткань – образуется из подкожного жира у беременных и при кормлении грудью. 

Кроме того, выделяются бежевые адипоциты. Такие клетки считаются переходной формой между белыми и коричневыми клетками жировой ткани. 

Структура отдельных типов жировой ткани различна, и это, в свою очередь, определяет, какую роль они играют в организме человека.

Название «коричневая» жировая ткань указывает на характерную окраску многочисленных митохондрий, содержащихся в ней.

Эта ткань есть только у млекопитающих, и ее основная задача – поддержание постоянной температуры тела и использование избыточной энергии.

Она отличается от белой жировой ткани наличием разобщенных белковых клеток белка-1 (UCP-1), так называемого термогенина, который позволяет расходовать энергию (рассеивание энергии в виде тепла). 

В этом основное отличие, поскольку белая жировая ткань накапливает энергию в форме триглицеридов, которые затем можно использовать в качестве источника энергии при повышенных расходах энергии. Белые адипоциты могут эффективно выполнять эту функцию благодаря большой способности увеличивать размер. Оказывается, клетки белой жировой ткани могут увеличивать свой диаметр до 20 раз.

Увеличение количества коричневого жира наблюдается в условиях пониженной температуры окружающей среды. Долгое время считалось, что этот тип тканей встречается только у новорожденных. Тем не менее в последних исследованиях этот вид жира также был обнаружен у взрослого человека. Он расположен в основном вокруг шеи и между лопатками.

Биологические свойства эндотелиальных клеток-предшественниц и их репаративный потенциал для клеточной терапии

Высокая распространенность заболеваний, связанных с атеросклеротическим поражением сосудов нижних конечностей, их прогрессирующее течение, часто приводящее к инвалидизации, обуславливает потребность в дальнейшем совершенствовании не только хирургической помощи, но и консервативной и малоинвазивной терапии пациентов с данной патологией. Среди консервативных и малоинвазивных методов особое место занимает терапия стволовыми клетками-предшественницами эндотелия как многообещающий метод для лечения пациентов, которым оперативное лечение не может быть предложено в силу характера поражения сосудистых бассейнов либо соматического статуса. В статье рассмотрены биологические свойства эндотелиальных клеток-предшественниц, патофизиологические основы их применения для терапии поражения эндотелия, приведен опыт клинических исследований.

Эндотелий — важнейший компонент сосудистой стенки, состоящий примерно из 1013 эндотелиальных клеток и занимающий около 7 м2 по площади в организме взрослого человека [1].

Эндотелий сосудов представляет собой динамическую структуру на границе между кровью и окружающими тканями и выполняет множество функций: регулирует питание, трафик компонентов крови, продуцирует ряд важнейших регуляторных факторов, таких как простагландины и оксид азота [NO], препятствует адгезии тромбоцитов и лейкоцитов, участвует во многих физиологических процессах, протекающих в организме, в том числе в гемостазе, воспалении и ангиогенезе [1, 2]. Повреждение эндотелия приводит к потере сосудистой стенкой антитромботических свойств, быстрому увеличению числа циркулирующих поврежденных эндотелиальных клеток, что может являться первоначальным критическим этапом, инициирующим развитие атеросклеротической бляшки [3, 4].

Таким образом, вопросы изучения, характеристики и поиска подходов к регенерации поврежденного эндотелия имеют исключительную значимость для терапии широкого спектра заболеваний, таких как ишемия нижних конечностей, инфаркт миокарда, системная склеродермия и др.

Процесс образования новых кровеносных сосудов носит название неоангиогенеза. По традиционным представлениям считалось, что в постнатальный период ангиогенез идёт исключительно за счет пролиферации, миграции и трансформации полностью дифференцированных эндотелиальных клеток из стенки уже сформированных кровеносных сосудов [5, 6].

Однако зрелые эндотелиальные клетки — это терминально дифференцированные клетки с низким пролиферативным потенциалом, их способность замещать поврежденные эндотелиальные клетки и образовывать новые сосуды относительно ограниченна. Следовательно, в процессах восстановления эндотелия и ангиогенеза должны принимать участие другие клетки.

Накопленные за последнее десятилетие знания показывают, что в крови взрослых людей содержатся клетки костномозгового происхождения по своим свойствам схожие с эмбриональными ангиобластами [7—10]. Эти клетки обладают способностью к дифференцировке в зрелые эндотелиальные клетки.

Они были названы эндотелиальными клетками-предшественницами (ЭКП), а процесс образования из них кровеносных сосудов — васкулогенезом.

Получены экспериментальные доказательства того, что эндотелиальные клетки-предшественницы экспрессируют эндоте-лий-специфические поверхностные маркеры (VEGFR, CD144, CD146, CD31 и др), обладают функциональными свойствами эндотелиальных клеток, принимают участие в поддержании целостности эндотелиальной выстилки сосудов и сосудистого гомеостаза [2, 11, 12], а также постнатальной неоваскуляризации в условиях ишемии in vivo [7, 8, 13-17].

Помимо прямого включения этих клеток в стенку сосуда, ЭКП обеспечивают также неоваскуляризацию и регенерацию тканей посредством синтеза сосудистых ростовых факторов, усиливающих локальный ангиогенез и вызывающих их дополнительную мобилизацию из костного мозга [18]. Клетки-предшественницы участвуют как в микроваскулярном ангиогенезе, так и в восстановлении эндотелия крупных сосудов [19—21].

Клетки-предшественницы эндотелия могут быть как гемопоэтического CD34+CD133+VEGFR+, так и мезенхимального происхождения. В терапевтических целях описано использование клеток обоих типов.

Гемопоэтические эндотелиальные клетки-предшественницы CD34^CD133'VEGFFt [ЭКП] Эти клетки можно получить из фракции мононукле-арных клеток костного мозга. Впервые ЗКП были выделены Т. Asahara с соавт. в 1997 г. из мобилизованной крови путем магнитной селекции, либо клеточного сор-тинга по характерному поверхностному маркеру CD34+.

Помимо CD34+ нативные ЗКП экспрессируют на своей поверхности CD133 и VEGFR (рецептор фактора роста эндотелия сосудов). Но даже в очищенной популяции CD34+ клеток здоровых доноров количество ЗКП (CD34+CD133+VEGFR+) составляет несколько сотых долей процента [8, 22]. Поэтому используется культивирование in vitro CD34+ клеток в условиях, способствующих их дифференцировке в ЗКП.

После культивирования подавляющее большинство клеток дифференцируются в ЗКП: меняется их морфология (клетки становятся вытянутыми), появляется экспрессия специфических для эндотелия маркеров (CD31, VEGFR2, vWF, Tie-2, E-selectin, CD144, CD146, CD184) и клетки приобретают способность связывать липопротеины низкой плотности (Dil—Ac—LDL, UEA—1), что является специфическим свойством эндотелиальных клеток [7, 8].

Основные условия, необходимые для эндотелиальной дифференцировки CD34+ клеток, заключаются в обязательном наличии субстрата: фибронектина или коллагена [23], а также среды с набором ангиогенных ростовых факторов. Срок культивирования составляет от 10 до 30 сут.

Способность ЗКП (CD34+) участвовать в восстановлении поврежденного эндотелия сосудов, а также образовывать новые функционально активные капилляры доказана в многочисленных экспериментальных работах [7, 8, 13—17, 24].

Вместе с тем, получение достаточного для терапевтического использования количества CD34+ у взрослого человека — трудоемкая и дорогостоящая процедура.

Читайте также:  Видео методики пункции яичка. Посмотреть видео методики пункции яичка.

Поэтому в настоящее время большое внимание уделяется поиску клеток-предшественниц негемопоэтического происхождения, способных дифференцироваться в эндотелий.

Мультипатентные мезенхимальные стромальные клетки (ММСК)

Биологическая характеристика жировой ткани

Жировая ткань является биологической субстанцией, вызывающей всевозрастающий научный интерес. В течение продолжительного времени функция жировой ткани сводилась к сохранению энергетических запасов организма, получаемых с пищей.

Однако оказалось, что жировая ткань секретирует молекулы, напрямую взаимодействующие с головным мозгом, и является компонентом иммунной системы.

Эта ткань формирует форму человеческого организма, определяя сексуальную привлекательность, тем самым выполняя еще и социальную функцию. Большинство исследований жировой ткани было проведено на животных, что не позволяет экстраполировать эти данные на человека.

Доступность жировой ткани для забора из организма человека открывает широкие возможности ее применения в качестве субстрата для клеточной терапии по различным показаниям.

Различают две разновидности жировой ткани человека: коричневую жировую ткань (brown adipose tissue — BAT) — КЖТ и белую жировую ткань (white adipose tissue — WAT) — БЖТ. Эти две разновидности выполняют различные функции, но по содержанию запасов итрацеллюлярного триглицерида относятся к жировой ткани [1, 2].

КЖТ участвует в механизме выработки энергии для организма, в то время как БЖТ имеет несколько функций: обеспечение термосбережения; определение формы тела, что особенно важно для сексуальной привлекательности женщин; сбережение энергии; амортизация при механических ударах; выполнение эндокринной функции; заполнение свободных пространств организма; облегчение скольжения мышц при их движении. КЖТ и БЖТ обычно не имеют четких границ, а существуют в виде смешанной субстанции [1, 3]. У женщин и мужчин с нормальной комплекцией жировая ткань составляет 22 и 15% от массы тела соответственно. Жировая ткань широко распространена по всему организму, при этом существуют различия в ее распределении у мужчин и женщин. Количество жировой ткани в организме может изменяться в зависимости от особенностей питания и энергозатрат. При поступлении в организм избыточной энергии жировая ткань может образовывать вокруг кровеносных сосудов недифференцированные клетки. На начальной стадии адипогенеза клетки не содержат жировых включений. Затем в стадии жировой пролиферации происходит аккумуляция жира, и преадипоциты дифференцируются в адипоциты с формированием островков жировой ткани. Если адипоцит теряет свою массу (в результате голодания и потери массы тела), клетка становится морфологически неравномерной, с увеличенными митохондриями в цитоплазме. Эти потерявшие жировое наполнение адипоциты (постадипоциты) окружены плотным коллагеновым матриксом, который может вызвать фиброз жировой ткани. Дольки жировой ткани окружаются соединительной тканью с формированием капсулы. Коллагеновая фрагментация продолжается до тех пор, пока каждый адипоцит не будет окружен коллагеновым матриксом (scaffold). Соединительнотканные перегородки внедряются в жировую ткань и разделяют ее на несколько более мелких фрагментов [1, 3].

Жировая ткань имеет два типа нервных волокон: симпатические и чувствительные. Доказано, что симпатическая иннервация подавляет увеличение количества жировых клеток. Это может служить подтверждением связи некоторых синдромов ожирения со сниженной симпатической иннервацией [1, 3]. У мышей и крыс не обнаружено парасимпатической иннервации жировой ткани [4].

Прямая нейронная связь между паравентрикулярными ядрами гипоталамуса и жировой тканью установлена только в придатке яичка [5]. Такая же прямая гипоталамическая связь существует с печенью, что может обеспечивать контроль за метаболическими процессами в организме.

Если учесть, что гипоталамус имеет множественные нейронные связи с другими отделами головного мозга, можно понять возможность непредсказуемых биологических взаимодействий. В межлопаточной области хомяков обнаружены прямые нейронные пути между центральной нервной системой и КЖТ.

Нейроны средней преоптической области, гипоталамические ядра, вентромедиальные гипоталамические ядра, супрахиазматические и латеральные гипоталамические ядра соединяются с межлопаточной КЖТ через пути спинномозговых волокон, а также со стволом головного мозга, средним и передним мозгом [2].

В зависимости от анатомической локализации жировая ткань демонстрирует различные свойства. Основная масса ткани локализуется в двух отделах: подкожном слое и сальнике. Этот массив ткани легко увеличивается или уменьшается в зависимости от питания.

Половые различия также влияют на количество и распределение жировой ткани. В то же время некоторые фрагменты жировой ткани, такие как периокулярные, ладонные, подошвенные, не вовлечены в метаболический процесс организма и их масса не изменяется даже в результате строгого поста. [1, 3].

Самые маленькие адипоциты, которые располагаются в брыжейке, наименее чувствительны к адреналину. Жировая ткань брыжейки имеет более богатые иннервацию и кровоснабжение. Кровоснабжение жировой ткани меняется в зависимости от индекса массы тела (ИМТ).

Сердечный выброс в жировую ткань варьирует от 3—7% у худых людей, до 15—30% — при выраженном ожирении. Такое увеличение сердечного выброса может вызывать гемодинамические эффекты с возможным развитием кардиомегалии и выраженной сердечной недостаточности.

Процентное содержание макрофагов в ткани также зависит от ИМТ: с увеличением массы тела увеличивается количество макрофагов, которые фагоцитируют жировые фрагменты погибших адипоцитов.

Адипоциты БЖТ содержат одну большую каплю жира в каждой клетке. Эта капля не имеет четкой дифференцировки, но у нее есть однослойная мембрана, отделяющая ее от цитоплазмы. Клетки бывают круглой или полигональной формы, и их размер варьирует от 25 до 200 мкм.

Они содержат много органелл, однако трудноразличимы на фоне крупного жирового фрагмента, который выдавливает внутриклеточные структуры вместе с ядром к периферии, где они находятся в тонкой прослойке цитоплазмы под плазмолеммой.

В процессе гистологической обработки жировой фрагмент исчезает, оставляя пустое пространство, которое под микроскопом визуализируется как кольцо. Большое скопление пиноцитотических везикул расположено возле плазматической мембраны. Для прокраски адипоцитов используют Sudan III или Scarlet Red staining.

БЖТ содержит множество сосудов, обычно каждый адипоцит контактирует с кровеносным сосудом.

Жировая ткань представлена зрелыми адипоцитами, преадипоцитами, постадипоцитами, мезенхимальными стволовыми клетками, клетками эндотелия, перицитами, мастовскими клетками, макрофагами, фибробластами, циркулирующими кровяными клетками, ретикулоцитами, нервными клетками. При этом зрелые адипоциты составляют ½ всей клеточной популяции.

КЖТ относят к жировой ткани, поскольку ее клетки содержат в цитоплазме триглицеридные депозиты. Коричневый цвет этой ткани обусловлен высоким содержанием цитохромной оксидазы в митохондриях, которая в избыточном количестве находится в цитоплазме. Различают две разновидности клеток КЖТ.

Первая популяция эмбриологически образуется из того же источника, что и мышечные клетки, и составляет основу всех классических депозитов КЖТ. Вторая популяция формируется из клеток БЖТ [6] и распределяется среди белых жировых клеток, поэтому именуется как «коричневая в белом» («beige or brite»). Анатомическое распределение КЖТ и БЖТ различно.

В течение первых 10 лет человеческой жизни КЖТ можно обнаружить практически в тех же местах, где находится БЖТ, например в межлопаточной области и на передней брюшной стенке.

Однако с течением времени КЖТ исчезает из периферических отделов и концентрируется во внутренних отделах организма: в средостении, вокруг почек, надпочечников, аорты, сохраняясь там вплоть до восьмой декады жизни.

Результаты недавних исследований, включающих 3604 пациента и основанных на исследовании 18F-FDG-PET/CT, показали, что объем и активность КЖТ более выражены у женщин. Мужской организм с возрастом теряет объем и активность КЖТ. Предполагается, что это связано с гормональными различиями, а именно — тестостероновой ингибицией экспрессии UCP1 mRNA в дозозависимом порядке.

Коричневые адипоциты имеют полигональную или эллипсовидную форму, их диаметр варьирует от 15 до 50 мк. Большое количество жировых капель различных размеров располагается в цитоплазме, что придает адипоцитам мультиокулярый вид [2]. КЖТ продуцирует тепло (термогенезис), которое распространяется по всему организму за счет циркуляции крови.

Регуляция термогенеза в основном осуществляется гипоталамусом. Поступающие от гипоталамуса сигналы вызывают высвобождение норэпинефрина, который индуцирует метаболизм жировых кислот в митохондриях коричневых адипоцитов. Выработка тепла происходит за счет функционирования высвобожденного протеина 1 (UCP1) во внутренней мембране митохондрий.

Этот протеин в литературе также называют «термогенин». Он присутствует только в клетках КЖТ, являясь их маркером. UCP1 активируется в присутствии свободных жировых кислот, высвобождаемых из триглицеридов в результате воздействия неэпинефрин-активированных β-адренергических рецепторов, и подавляет генерацию АТФ в процессе оксидирования жира.

В результате свободная энергия выделяется в виде тепла. Механизм выработки тепла до сих пор изучается. UCP1 скорее всего является переносчиком триглицеридов, а не протонов. Свободные протоны выбрасываются в цитоплазму из митохондрий, где они соединяются с жировыми кислотами, переводя их в растворимое состояние. Эти растворимые жировые кислоты возвращаются в митохондрии.

При этом (согласно концепции расщепления) протоны не используются для продукции АТФ, а тепло генерируется за счет высвобождения протонов. Таким образом, жировые кислоты вновь переходят в нерастворимое состояние и транспортируются в цитоплазму с помощью UCP1. Остаточные продукты оксигенированного жира, вероятно, подавляют активность UCP1.

Читайте также:  Эмаль зуба. Строение эмали зуба.

КЖТ иннервируется симпатическими нервными волокнами. Выработка тепла зависит от особенностей воздействия секретируемого из нервной ткани норэпинефрина на рецепторы КЖТ. При активации β3-рецепторов происходит активация термогенеза, а при активации β2-рецепторов — его ингибиция.

Хотя очевидно, что механизм терморегуляторного баланса существует, однако он нуждается в дальнейшем изучении. Сигналы от кожных терморецепторов по нервным путям поступают в ростральный отдел гипоталамуса, который является предмозговым центром системы КЖТ-терморегуляции [1, 3]. Помимо термогенерирующей функции, коричневые адипоциты секретируют ряд молекулярных элементов, а именно компоненты экстрацеллюлярного матрикса (ЭЦМ) (collagen IV, laminin, heparan sulphate, proteoglycan, fibronectin), аутокринные молекулы (adipsin, FGF-2, IGF-I, prostaglandins E2, prostaglandin Fa, adenosine), паракринные молекулы (NGF, VEGF-A, VEGF-B, VEGF-C, nitric oxide, angiotensinogen), эндокринные молекулы (fatty acids, leptin, adiponectin).

ЭЦМ жировой ткани представлен коллагеновыми, ретикулярными, эластическими волокнами, сосудами, стромальной и лимфатической системой. ЭЦМ ткани очень важен для выживания зрелых адипоцитов, включающих большие жировые капли.

Масса этих жировых капель намного превышает массу остальных структур клетки, поэтому механическая поддержка ЭЦМ предохраняет клетки от разрушения [7]. Кроме того, сама архитектура ЭЦМ перераспределяет векторы давления окружающих тканевых структур, что также снижает опасность разрушения [8].

ЭЦМ можно разделить на две части: базальную мембрану и межклеточную субстанцию. Каждый адипоцит имеет свою собственную базальную мембрану, состоящую из сети коллагеновых волокон 4-го типа, пластинки, гепарансульфат полигликана (heparan sulphate proteoglycan), перликана и энтактина.

Основным компонентом межклеточной субстанции является коллаген 6-го типа [7]. Детальное рассмотрение этого протеина необходимо для лучшего понимания специфики жировой ткани.

Коллаген 6-го типа обладает интересными свойствами. Этот протеин связывается с коллагеном 4-го типа базальной мембраны и взаимодействует с протеогликанами и фибронектином. Коллаген 6-го типа образует структурную интеграцию ЭЦМ.

Трехмерная форма (3D) этого коллагена состоит из тетрамеров, которые имеют множество ответвлений, мягкие корзиноподобные волокна, объединяющие различные структуры, такие как сосуды, нервы и другие коллагеновые волокна соединительной ткани, связанные или не связанные с базальной мембраной.

Пространственная конфигурация коллагена 6-го типа различается в зависимости от тканевой локализации. Он может секретироваться из фибробластов, мышечных клеток, макрофагов, адипоцитов, а также из опухолевых клеток.

В некоторых клетках коллаген 6-го типа усиливает миграцию и инвазию (макрофагоподобные клетки) и способствует выживанию, однако эти эффекты также могут вызывать пролиферацию опухолевых клеток.

Коллаген повышает в непосредственной близости от себя количество цитокинов, лигандов, факторов роста и способен самостоятельно посылать сигналы окружающим клеткам. Мышечная слабость, возникающая при дефиците коллагена 6-го типа, подчеркивает его важное значение. Изучение свойств коллагена позволяет понять функционирование ЭЦМ жировой ткани.

Плотность жировой ткани у свиньи составляет 4,1 (1,2) кг/м3, что примерно в 4 раза ниже плотности дермы (около 17 кг/м3). Плотность ткани дает представление об упругонаследственности, что применительно к жировой ткани является важной информацией для определенных процессов тканевой инженерии, таких как возможности манипуляции с тканью, вакуумной аспирации и трансплантации. Плотность жировой ткани в основном обеспечивается трехмерной микроархитектурой коллагена 4-го типа [8].

Жировая ткань не только выполняет депонирующую функцию, но также является эндокринным органом [9]. Это ткань состоит из адипоцитов, преадипоцитов, фибробластов, стромально-васкулярных клеток, мастовских клеток, и все эти клетки секретируют биологические молекулы и могут вырабатывать как однотипные, так и дифференцированные вещества.

При этом один секретируемый продукт может вырабатываться только строго определенным типом клеток, в то время как другой — тремя или четырьмя типами. Постоянная миграция макрофагов и мастовских клеток приводит к изменению общего количества клеток, что затрудняет оценку секретирующей функции жировой ткани.

На существующий в БЖТ клеточный трафик влияет целый ряд параметров.

Секретируемые жировой тканью продукты могут быть классифицированы в зависимости от их специфики следующим образом: компоненты ЭЦМ (collagen I, III, VI, V, laminin, heparan sulphate, proteoglycan, perlecan, entactin), аутокринные (glycerol, NEFA, monoglyceride, eicosanoids, oleoyl-esttrone, prostagalandin E2, I2, lipoprotein lipase, acylation-stimulating protein, fasting-induced adipose factor, cholestery1 ester transfer protein, tumor necrosis factor a, interleukin-6, complement components, angiotensinogen, VEGF, metalloproteinase inhibitors, matrix metalloproteinases, secreted protein acidic), паракринные (NEFA, monoglyceride, eicosanoids, oleoy1-estrone, prostaglandin E2,12, acylation-stimulating protein, fasting-induced adipose factor, cholesteryl ester transfer protein, tumor necrosis factor α, interleukin-6, IL-1β, IL-8, IL-10, IL-18, IL-17D, transforming growth factor-β, monocyte chemoattractant protein 1, macrophage migration inhibiting factor, complement components, haptoglobin, serum amyloid A3, plasmogen activator inhibitor-1, angeotensinigen, pigment epithelian-derived factor, adrenomedullin, VEGF, apelin, NGF, fibroblast growth factors, metalloproteinase inhibitors, matrix metalloproteniases, secreted protein acid), эндокринные (NEFA, leptin, resistin, omentin, estrogen, oleoy1-oestrogen, androgens, cortisol, cortisone, adiponectin, vistafin, vaspin, fasting-induced adipose factor, retinol binding protein, interleukin-6, IL-1β, IL-8, IL-10, IL-18, IL-17D, transforming growth factor-β, monocyte chemoattractant protein 1, macrophage migration inhibiting factor, complement components, haptoglobine, serum amyloid A3, plasminogen activator inhibitor-1, pigment epithelian-derived factor, adrenomedullin, VEGF, apelin

Биологическая роль эндотелия в условиях нормы

 Агабеков А.И., Рзаева Т.Ш.

Научные руководители: д.м.н., проф. Чеснокова Н.П., д.м.н., проф. Барсуков В.Ю

Кафедра патологической физиологии им. А.А. Богомольца

Введение

Эндотелиальные клетки имеют.гетерогенную структуру, обладающую многообразными функциями, а нарушение структуры и функций эндотелия является инициирующим фактором развития различных форм патологии.

Эндотелиальная выстилка сосудов весьма разнообразна, в ряде органов и тканей имеет плотные межклеточные контакты, носит непрерывный характер, что свойственно для гематоэнцефалического барьера.

В других органах и тканях, в частности, в почках, ряде эндокринных желез, эндотелий носит фенестрированный, синусоидальный характер, и тем самым обеспечивает селективную проницаемость для различных веществ (З. А. Лупинская, А. Г.Зарифьян, Т. Ц. Гурович, С. Г. Шлейфер 2008)

Сосудистый эндотелий, по мнению ряда авторов, является эндокринным органом, и выполняет многочисленные функции, в частности, регуляцию коагуляционного потенциала крови, а также сосудистого тонуса.

Эндотелиальные клетки опосредуют воспалительные и иммунные процессы; регулируют адгезию лейкоцитов; модулируют окисление липидов; регулируют проницаемость сосудов, их реэндотелизацию за счет факторов роста.

Целью данной работы явился анализ данных литературы отечественных и зарубежных авторов относительно роли эндотелия в регуляции функциональной активности сосудистой стенки в условиях нормы.

Эндотелиальные факторы, регулирующие сосудистый тонус.

Среди эндотелиальных факторов, влияющих на сосудистый тонус, выделяют вазодилатирующие факторы, к которым относятся NO, EDHF (эндотелиальный гиперполяризующий фактор), простациклин, адреномедуллин, моноокись углерода, пуриновые основания, эндогенные каннабиоиды, Na-уретический пептид С, кинины и ряд других.

К вазоконстрикторным факторам, продуцируемым эндотелиальными клетками, относятся тромбоксан А2, эндотелины, 20-HETE (20-гидрооксиэйкозотетраеновая кислота), ангиотензин II. Балланс между факторами релаксации и констрикции определяет тонус сосудов и соответственно величину местного кровотока. (Каде А.Х., Занин С.А., Губарева Е.

А. и др. , 2011)

Вазодилатирующие факторы, продуцируемые эндотелием

Касаясь биологических эффектов ряда вазодилатирующих соединений, синтезируемых в эндотелиальных клетках, следует прежде всего остановиться на эффектах NO.

NО образуется в клетках эндотелия из L-аргинина под  действием фермента NO-синтетазы. Имеются два уровня секреции NO — базальный и стимулированный. Тонус сосудов в покое осуществляется постоянной базальной секрецией.

Некоторые химические вещества: ацетилхолин, АТФ, брадикинин, а также гипоксия или механическая деформация увеличивают синтез NO.

Стимулируя гуанилатциклазу, NO увеличивает образование цГМФ в гладкомышечных клетках, тромбоцитах, что обусловливает расслабление сосудов, ингибирует пролиферацию гладкомышечных клеток и тормозит активность тромбоцитов и макрофагов. (В. Ф. Киричук, А. П. Ребров, С. И. Россошанская, 2005)

Простациклин синтезируется преимущественно в эндотелии. Основным механизмом, регулирующим его образование, является активность ферментов циклооксигиназ.

Простациклин оказывает вазодилатирующее действие за счет стимуляции специфических рецепторов, локализованных на  гладкомышечных клеток сосудов, что ведет к повышению активности в клетках аденилатциклазы и увеличение образования цАМФ.  (Дзгоева Ф. У., Кутырина И. М. 2000)

Читайте также:  Левое предсердие. правый желудочек. топография правого желудочка. строение правого желудочка.

При блокировании действия NO и простациклина вазодилатацию вызывает эндотелиальный фактор гиперполяризации (EDNF).

Данный фактор выделяется только под действием некоторых стимулов: ацетилхолина, брадикинина, тромбина, гистамина, субстанции Р, АДФ, АТФ.

 EDNF является мощным вазодилататором, воздействующим на Cа++-зависимые К+-каналы гладкомышечных клеток сосудов, стимулируя выход из них ионов калия, который вызывает их гиперполяризацию и расслабление.

Пуриновые основания, эндогенными источниками которых являются тромбоциты, эндотелиоциты, нейроны и другие клетки, действуют на различные рецепторы клеток сосудистой стенки: при воздействии на рецепторы эндотелия, происходит стимуляция образования основных вазодилатирующих факторов: простациклина, оксида азота, эндотелиального гиперполяризующего фактора; при воздействии на рецепторы гладкомышечных клеток сосудов пуриновые нуклеотиды вызывают эндотелий-независимую вазодилатацию.

К эндогенным каннабиоидам относят анаидамид и 2-арахидонилглицерин, источниками которых являются клетки эндотеия, тромбоциты, лейкоциты, макрофаги, а также периваскулярные нервные окончания.

Анаидамид и 2-арахидонилглицерин образуются в больших количествах при активации тромбоцитов и моноцитов и участвуют в механизмах снижения артериального давления при различных патологических состояниях. (Чурюканов М. В.

, Чурюканов В. В., 2004)

Известны еще два фактора, выделяемые эндотелием и вызывающие дилатацию сосудов: натрийуретический пептид С-типа (НПС) и адреномедуллин.  Натрийуретический пептид С вызывает релаксацию сосудов и угнетает пролиферацию гладкомышечных клеток.

Большей частью НПС синтезируется в эндотелии, воздействует на рецепторы гладкомышечных клеток, вызывая увеличение образования цГМФ, приводящего к расширению сосуда. Адреномедуллин действует как прямой вазодилататор за счет увеличения продукции цАМФ.

В результате активации аденилатциклазы образуется из препроадреномедуллина в эндотелиальных и гладкомышечных клетках сосудов. Доказано. что сосудорасширяющее действие адреномедуллина связано как с эндотелий-зависимыми, так и с эндотелий-независимыми механизмами.

Предполагается наличие специфических рецепторов к адреномедуллину. (Kitamura K. et al. Adrenomedullin, 1993)

Моноокись углерода образуется из гема  под действием двух изоформ гемоксигеназ (НО-1 и НО2). Образуется СО в различных регионах, но преимущественно — в эндотелии сосудов мозга (Faraci F.M., Heistad D.D.,  1998), где участвуют в регуляции кровотока, непосредственно вызывая расслабление мозговых сосудов. (Черток В. М., Коцюба А. Е., 2012)

Калликреин-кининовая система. Вазодилатирующий эффект кининов связан с активацией В2 рецепторов на эндотелии и образованием основных эндотелиальных вазодилатирующих факторов — NO, простациклина,  EDHF.

Вазоконстрикторные факторы, продуцируемые эндотелием         

Эндотелиальные факторы вызывают сужение сосудов, что связано с отсутствием высвобождения факторов релаксации и с продукцией констриктивных агентов. К вазоконстрикторам, синтезирующимся в эндотелиальных клетках относят эндотелины, тромбоксан А2, 20-HETE (20-гидрооксиэйкозотетраеновая кислота), ангиотензин II.

Эндотелины — наиболее мощные вазоактивные вещества. Самый изученный представитель данной группы — эндотелин-1.

В физиологических концентрациях он действует на эндотелиальные рецепторы, вызывая высвобождение факторов релаксации, а в более высоких — активируют рецепторы на гладкомышечных клетках, стимулируя стойкую вазоконстрикцию и пролиферацию медии.  (Дремина Н. Н., Шурыгин М. Г., Шурыгина И. А., 2016)

Тромбоксан А2 преимущественно синтезируется в тромбоцитах, но некоторое его количество образуется в эндотелии. Специфические рецепторы к нему расположены на гладкомышечных клетках сосудистой стенки.

Сокращение гладкомышечных клеток при стимуляции тромбоксаном связано со снижением активности аденилатциклазы и повышением содержания внутриклеточного кальция. (Дзгоева Ф. У., Кутырина И. М.

, 2000)

Ангиотензин ||, образуется в результате активации ренин-ангиотензиновой системы и является одним из наиболее сильных вазоконстрикторов.

Активация данной системы может происходить  как на системном уровне при выделении ренина клетками юкстагломерулярного комплекса почек, так и локально, на уровне эндотелия, в котором образуется ренин и ангиотензин-превращающий фермент. (Бабак О. Я., Кравченко Н. А. 2005)

 Вазоконстрикторную функцию выполняет 20-гидроксиэйкозотетраеновая кислота (20-НЕТЕ) — продукт обмена арахидоновой кислоты по монооксигеназному пути. 20-НЕТЕ, действуя на гладкомышечные клетки сосудов, вызывает деполяризацию клеточных мембран.

Его образование увеличивается под действием ангиотензина 2 и эндотелина-1, а также при гипероксии и является одним из ведущих факторов высокого артериального давления. Увеличение его образовния сопровождается включением тормозных регуляторных механизмов активацией синтеза простациклина, т.е.

сохраняется принцип антагонистической регуляции.

Роль эндотелия в регуляции коагуляционного потенциала крови

Одной из важных функций эндотелия является обеспечение тромборезистентности сосудистой стенки, а с другой стороны ее тромбогенности.

К числу тромбогенных факторов, стимулирующих процессы адгезии и агрегации тромбоцитов относится vWF (фактор Виллебранда), PAF (фактор активации тромбоцитов), АДФ, тромбоксан А2 Адгезия тромбоцитов к эндотелию — это начальный этап процессов гемостаза и тромбоза, что приводит к формированию тромбоцитарного тромба, активации плазменных прокоагулянтов с последующим образованием тромбина. К ингибиторам синтеза тромбина относятся: тромбомодулин, протеогликаны, предотвращающие избыточное фибринообразование. Тромборегуляторы оказывают влияние не только на гемостаз, но и проницаемость сосудов, вазомоторные реакции, ангиогенез, клеточную пролиферацию. (Петрищев Н.Н., Власов Т.Д. 2003)

Как указывалось выше, при гипоксии и действии медиаторов, увеличивающих синтез NO, в эндотелиальных клетках, медии и адвентиции синтезируется простациклин.

Простациклин активирует аденилатциклазу, следствием чего является увеличение содержания цАМФ, который, помимо выполнения вазодилатирующей функции,  препятствует активации тромбоцитов и вызывает релаксацию сосудов.

Нарушение синтеза простациклина или снижение его поступления в кровь создает тромбогенную опасность. NO подавляет адгезию и агрегацию тромбоцитов. Этот процесс ассоцирован с увеличением содержания в тромбоцитах цГМФ.

Тромбогенный риск повышается по мере снижения содержания в плазме крови активных антитромбинов, в первую очередь АТ III, при одновременном наличии предрасполагающих факторов — гиперлипидемии, ожирения, диабета, сердечной недостаточности.  (Suck G., Traut W. 2000)

Эндотелий играет важную роль в развитии фибринолиза за счет секреции тканевого и урокиназного активаторов плазминогена и  его ингибиторов, которые могут или быстро нейтрализовать плазмин, или препятствуют активации плазминогена.

Под влиянием гемодинамических факторов, пристеночного напряжения сдвига, трансмурального давления и ряда других факторов возникает динамическое изменение синтеза и секреции тромбогенных и атромбогенных субстанций эндотелия.

В физиологических условиях выделение атромбогенных субстанций преобладает над тромбогенными. (Петрищев Н.Н., Власов Т.Д. 2003)

Физиологический антикоагулянтный комплекс — это система протеина С (Pr C), в которую входит тромбомодулин, протеин С, протеин S, тромбин (активатор Pr C) и ингибитор Pr C. Функцией данной системы является ингибирование факторов свертывания крови Va и VIIIa, инактивация ингибитора тканевого активатора плазминогена. (Айламазян Э. К., Мозговая Е. В. 2008)

В регуляции гемостатической функции эндотелия большое значение имеют гормоны вазопрессин, эстрогены, цитокины: интерлейкин-1, TNF- α,  гемодинамические факторы.  К факторам эндотелиального происхождения, ингибирующим адгезию и агрегацию тромбоцитов, относят простациклины, простагландины Е2,  NO.

Значение эндотелия в регуляции адгезии лейкоцитов

Исключительно важную роль играет эндотелий в развитии адгезии лейкоцитов. К адгезивным молекулам эндотелия относятся Р-селектин, GMP-140, ELAM-1, ICAM.

Повышение адгезивности эндотелия имеет большое значение в патогенезе воспалительных процессов, атеросклерозе, септическом шоке.

Однако до настоящего момента остается не изученным значение нарушения адгезивных свойств сосудистой стенки в патогенезе неоплазий различной локализации и развитии метастазирования малигнизированных клеток.

Значение эндотелиальных клеток в процессе ангиогенеза

Эндотелию принадлежит значительная роль в процессе ангиогенеза в условиях патологии. В стабильном состоянии эндотелиоциты пролиферируют лишь раз в 10 лет.

Под действием ангиогенных факторов происходит пролиферация эндотелиоцитов, которая заканчивается их дифференцировкой и реэндотелизацией сосудов.

Эндотелий активно участвует в процессе кооперации между эндотелиоцитами и окружающими клетками, выделяя факторы роста (VEGF, FGF-2), вызывая таксис и пролиферацию гладкомышечных клеток и фибробластов.

Эндотелиальная дисфункция является одним из универсальных патогенетических факторов развития таких форм патологии как атеросклероз, гипертоническая болезнь, сахарный диабет, тромбогеморрагический синдром и канцерогенез. Причинами эндотелиальной дисфункции могут быть ишемия, гипоксия тканей, свободно-радикальное повреждение, цитокины и ряд других факторов.

Заключение

В патогенезе заболеваний различного генеза большое значение имеют нарушения функциональной активности сосудистой стенки, являющейся, по существу, эндокринным органом, регулирующим состояние сосудистого тонуса, коагуляционного и тромбоцитарного-сосудистого звеньев системы гемостаза, фибринолиз, адгезивно-агрегационные способности эндотелия, процессы ангиогенеза, экспрессирующие белки МНС I и II классов, участвующих в ряде случаев в представлении антигенов-аллергенов, а также продуцирующим различные цитокины локального и системного действия. В патогенезе заболеваний различной этиологии важная роль относится эндотелиальной дисфункции, в связи с этим абсолютно необходимо знание многочисленных функций сосудистой стенки в условиях нормы и маркеров эндотелиальной дисфункции, свидетельствующих о развитии патологии.     

Ссылка на основную публикацию
Adblock
detector