Движение воды по цветковому растению. Движение воды по листьям.

«В природе нет ничего бесполезного» — Мишель де Монтень

Только вдумайтесь в мощь проводящей ткани! Ведь ей приходится поднимать воду и растворенные в ней минеральные вещества от тончайших волосков корня до клеток листа.

Самое высокое дерево на нашей планете, вечнозеленая секвойя по имени Гиперион, растет на севере Калифорнии и достигает (на 2017 год) — 117 метров в высоту.

И вода по проводящим тканям преодолевает 117 метров высоты у этого растения, от корней к листьям! Она передвигается по структурам проводящих тканей против силы тяжести, и сегодня вы узнаете о секрете, который таит это уникальное явление.

Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая микропрепараты.

Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку. Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.

Движение воды по цветковому растению. Движение воды по листьям.

Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты обмена веществ из них.

Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ.

Имеется два направления тока: от корней к листьям (восходящий ток) и от листьев к корням (нисходящий ток).

Логическим путем можно угадать многие научные факты, даже не зная их.

К примеру, чем представлен восходящий ток? Что поднимается от корней к листьям? Это конечно же вода и растворенные в ней минеральные вещества, они движутся по сосудам и трахеидам проводящей ткани — ксилемы (древесины).

От листьев к корням спускаются органические вещества, образовавшиеся в результате фотосинтеза в листьях, они движутся по ситовидным трубкам проводящей ткани — флоэмы (луба).

Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, превышающую массу самого сфагнума во 20-25 раз. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевязочного материала. Кроме того, он обладает бактерицидными свойствами.

В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.

Ксилема (древесина)

Обеспечивает восходящий ток (от корней к листьям) воды и растворенных в ней минеральных солей.

В толще проводящей ткани находятся отнюдь не только те самые трахеиды и сосуды, ее пронизывают многочисленные механические волокна — древесинные, обеспечивающие каркасность и прочность.

В ксилеме содержатся также запасающие структуры, представленные древесинной паренхимой, где накапливаются питательные вещества. Давайте разберемся из каких гистологических элементов состоит ксилема.

  • Трахеиды
  • Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую, спиралевидную, кольчатую. Движение воды по цветковому растению. Движение воды по листьям.

  • Сосуды
  • Длинные трубки, представляющие собой слияние отдельных мертвых клеток «члеников» в единый «сосуд». Ток жидкости идет из нижележащих отделов в вышележащие благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм. Движение воды по цветковому растению. Движение воды по листьям. Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению он растягивается и обеспечивает ток воды и минеральных солей. Движение воды по цветковому растению. Движение воды по листьям.

  • Древесинные волокна (либриформ)
  • Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной клеточной стенкой, которая придает ксилеме механическую прочность.

  • Паренхимные клетки (древесинная паренхима)
  • Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.

Флоэма (луб)

Образовавшиеся в результате фотосинтеза в листьях продукты необходимо доставить в те части растения, где есть потребность в питательных веществах: конусы нарастания, подземные части, или «складировать» на будущее в семенах и плодах. Флоэма обеспечивает нисходящий ток органических веществ в растении, доставляя их по месту назначения. До 90% всех перемещаемых веществ по флоэме составляет углевод — дисахарид сахароза.

Эта ткань представлена ситовидными трубками, генез (от греч. genesis — происхождение) которых различается: первичная флоэма дифференцируется из прокамбия, вторичная флоэма — из камбия. Несмотря на различия генеза, клеточный состав описанных тканей идентичен.

Разберемся с компонентами, которые входят в состав флоэмы:

  • Ситовидные элементы
  • Это живые клетки, обеспечивающие основной транспорт. Особо стоит выделить ситовидные трубки, образованные множеством безъядерных клеток — «члеников», соединенных в единую цепь. Между «члениками» имеются поперечные перегородки с порами, благодаря которым содержимое из вышележащих клеток поступает в нижележащие. Эти перегородки похожи на сито — вот откуда берется название ситовидных трубок 🙂 Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность ситовидных трубок. Движение воды по цветковому растению. Движение воды по листьям.

  • Склеренхимные элементы (лубяные волокна)
  • Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.

  • Паренхимные элементы (лубяная паренхима)
  • Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.

По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают. Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.

Ниже вы найдете продольный срез тканей растения, изучите его.

Движение воды по цветковому растению. Движение воды по листьям.

Жилка

Это сосудисто-волокнистый пучок, образованный ксилемой и флоэмой. Ксилема располагается сверху, флоэма — снизу.

Над пучком и под ним располагаются уголковая или пластинчатая колленхима, прилежащая к эпидерме и выполняющая опорную функцию. Склеренхима может располагаться участками или вокруг этих жилок.

Жилки развиваются из прокамбия, располагаются в центральном осевом цилиндре. Существует два вида жилок:

  • Открытые
  • Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно обнаружить во всех органах двудольных растений.

  • Закрытые
  • Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы. Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.

Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань – склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.

Движение воды по цветковому растению. Движение воды по листьям.

Как вода поднимается от корней к листьям, против силы тяжести?

Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и присасывающего листового.

  • Корневое давление
  • Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос: клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться в сосуды.

  • Транспирация
  • Работа верхнего концевого двигателя заключается в транспирации — испарении воды с поверхности листа. Представим себе длинный сосуд с жидкостью от корневых волосков до клеток листа. Далее проведите следующий мысленный эксперимент: из верхнего конца трубки жидкость все время удаляется путем испарения, то есть место освобождается и это создает притягивающую силу для жидкости расположенной ниже, она поднимается наверх, на место испарившейся жидкости. Присасывающее действие транспирации передается корням в форме гидродинамического натяжения, которое связывает между собой работу обоих двигателей.

Проект "Как увидеть движение воды в растениях"

  • Муниципальное  бюджетное  образовательное  учреждение
  • « Детский сад № 3» г. Калачинска Омской области
  • XVIII — муниципальная научно – практическая конференция школьников, воспитанников дошкольных образовательных учреждений и учреждений дополнительного образования детей.
  • «Как увидеть движение воды в растении»
  •                                                             Работа Мелёхиной Анастасии,
  •                                                             воспитанницы  подготовительной группы №2
  •                                                              « Детского сада № 3»

                                                            Руководитель: воспитатель Белозерова Е.А.

г. Калачинск – 2013г.

  1. Тема: «Как увидеть движение воды в растении»
  2. Для педагога:
  3. Цель: Формирование у дошкольников интерес к научно – исследовательской деятельности.
  4. Задачи:
  1. Дать детям представление о том, что срезанный цветок всасывает воду через стебель.
  2. Развивать умение фиксировать результаты наблюдения, формировать умения делать выводы.
  3. Развивать самостоятельность, коммуникативность, расширять кругозор детей о жизни растений.
  • Для участника:
  • Цель: Выявить, почему срезанное растение в воде не вянет.
  • Задача: С помощью опыта установить возможность движения воды по стеблю растения.

Гипотеза: Если срезанные цветы всасывают воду через свой стебель, то окрашенная пищевым красителем вода изменит цвет лепестков цветка в соответствии с цветом красителя. Таким образом можно доказать, что  срезанные растения питаются через свой стебель.

 Я хочу рассказать о своей работе «Как увидеть движение воды в растении ».

     Все мы знаем, что растениям необходимы для роста: воздух, свет, тепло и вода. Корни в жизни растений играют важную роль: укрепляют растения в почве, берут из неё влагу. А как же срезанные растения питаются, если они в воде не вянут?

       Чтобы увидеть это, мы с Еленой Александровной, моей воспитательницей, решили в вазу с водой добавить пищевой краситель. Ведь вода сама по себе прозрачная и без красителя нельзя увидеть движение её по стеблю цветка. Для своего опыта мы взяли срезанные цветы только белого цвета: ирис и розу.

Около часа цветы были без воды. В это время мы рассмотрели, что внутри каждого стебля есть канальцы.

Белый ирис мы поставили в стакан с зелёным красителем. И уже через полчаса мы увидели на лепестках цветка зелёные прожилки, а через два часа цветок стал необычным – зелёного цвета.

Исследовательская работа :движение воды в растениях

  • МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТОСТАН
  • МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖЕНИЕ
  • СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №85
  • ОРДЖОНИКИДЗЕВСКОГО РАЙОНА ГОРОДСКОГО ОКРУГА ГОРОД УФА
  • РЕСПУБЛИКИ БАШКОРТОСТАН
  • Секция: «Окружающий мир»
  • Тема: Движение воды в растениях
  • Автор: Ильясова Арина Дмитриевна
  • ученица 2 «Б» класса
  • Научный руководитель: Сафарова Л.М
  • учитель начальных классов
  • Уфа -2013
  • Оглавление

Введение…………………………………………………..с.3

Глава I. Основы поглощения воды……………………..с. 4-6

1.1 Корневая система как орган поглощения воды

1.2 Основные двигатели водного тока

Глава II. Транспирация………………………………….. с.7-9

2.1 Назначение транспирации

Глава III. Адаптация к дефициту воды…………………с.10-11

Заключение……………………………………………….с.12

Список литературы………………………………………с.13

Введение

Если посмотреть на фотографию нашей планеты, полученную из космоса, сразу видно обилие голубого цвета на земном шаре. Это — вода, занимающая три четверти поверхности Земли.  Вода — все знают, как она проста. Но за этой кажущейся простотой — свойства самого удивительного и замечательного вещества на Земле.

  1. Данная тема достаточно актуальна, так как за последние десятилетия возросла скорость изменений, относящихся к различным явлениям жизни всего мирового сообщества, в том числе и по отношению к воде.
  2. Цель работы: изучить движение воды в растениях.
  3. Постановка указанной цели определяет круг задач:
  4. -сбор и анализ литературы по данному исследованию;
  5. — провести анализ литературы;
  6. -провести опытно – экспериментальную работу.
  7. Объект исследования: вода
  8. Предмет исследования: движение воды в растениях
  9. Практическая ценность работы состоит в широких возможностях применения основных выводов настоящего исследования на уроках, классных часах, внеклассных мероприятиях.
  10. Глава I. Основы поглощения воды

Живые растительные клетки на 80-90 процентов состоят из воды. Даже клетки сухих семян, в которых приостановлена жизнь, содержат 10 процентов воды. Листья растений постоянно испаряют воду, особенно днем.

Это происходит потому, что их поверхность усеяна многочисленными микроскопическими отверстиями — устьицами. Причем на нижней поверхности листа, их значительно больше, чем на верхней. Днем устьица открыты и водяные пары выходят из листа. Ночью же они закрываются, и испарение воды практически прекращается.

Но и ночью растение медленно теряет воду. Она уходит, минуя устьица, через тонкую кожицу листа. 

Водный ток обеспечивает связь между отдельными органами растений. Питательные вещества передвигаются по растению в растворенном виде. Насыщенность водой обеспечивает прочность тканей и сохранение структуры травянистых растений. Рост клеток идет главным образом за счет накопления воды в определенных ее частях.

Таким образом, вода обеспечивает протекание процессов обмена. Для нормальной жизнедеятельности клетка должна быть насыщенна водой.

Основным источником влаги является вода, находящаяся в почве, и основным органом поглощения воды является корневая система. Роль этого органа, прежде всего, заключается в том, что благодаря огромной поверхности обеспечивается поступление воды в растения из возможно большого объема почвы.

    1. Корневая система как орган поглощения воды

Водную проблему растение решает с помощью хорошо развитой водопроводящей системы, которая начинается в корнях, поглощающих влагу из почвы, продолжается в трубках, подающих ее ко всем частям растения, и заканчивается испарением из листьев в воздух. Кажется, все просто. Однако механизм передвижения воды на самом деле сложен и не до конца еще изучен. 

Рост корня, его ветвление продолжается в течение всей жизни растительного организма, то есть практически он не ограничен. Определение размеров корневых систем требует специальных методов. Оказалось, что общая поверхность корней обычно превышает поверхность надземных органов в 104-150 раз.

При выращивании одиночного растения ржи было установлено, что общая длинна его корней достигает 600 км при этом на них образуется 15 миллиардов корневых волосков. Эти данные говорят об огромной потенциальной способности к росту корневых систем. Однако эта способность не всегда проявляется.

При росте растений с достаточно большой густотой размеры корневых систем заметно уменьшаются.

Корневые волоски проникают в самые мелкие трещины почвы и, обнаружив хоть немного влаги, поглощают ее.

Важное значение для развития корневых систем имеет кислород. Именно недостаток кислорода является причиной плохого развития корневых систем на заболоченных почвах. Растения, приспособленные к росту на плохо продуваемых почвах, имеют в корнях систему межклетников, которые вместе с межклетниками в стеблях и листьях составляют единую вентиляционную систему.

    1. Основные двигатели водного тока

Поглощение воды корневой системой идет благодаря работе двух двигателей водного тока: верхнего двигателя, испарения (транспирации), и нижнего двигателя, или корневого двигателя.

Основной силой, вызывающей поступление и передвижение воды в растении, является сила испарения, в результате которой возникает градиент приток водного потенциала. Водный потенциал – это мера энергии, которую использует вода для передвижения.

Водный потенциал и сосущая сила одинаковы по значению, но противоположны по знаку. Чем меньше насыщенна водой данная системы, тем меньше ее водный потенциал.

Таким образом, верхний двигатель водного тока в растении – это присасывающая сила листьев, и его работа мало связана с жизнедеятельностью корневой системы. Действительно, опыты показали, что вода может поступать в побеги и через мертвую корневую систему, причем в этом случае поглощение воды даже ускоряется.

Глава II. Транспирация

Транспирация определяется как испарение воды в атмосферу с листьев и стеблей живых растений. Растения впитывают влагу, содержащуюся в почве, через корни, причем эта вода может брать начало глубоко под землей. Так, например, зерновые растения имеют корни длиной до 2.5 метров, а корни некоторых растений пустыни уходят в землю на глубину 20 метров.

Вода, которую выкачивают растения из-под земли, доставляет питательные вещества к листьям растений. Эта подкачка регулируется испарением воды через небольшие поры, которые расположены с обратной стороны листьев. Растение испаряет воду, когда влажность окружающего воздуха ниже, чем влажность воздуха в порах; в противном случае растение поглощает водяной пар из воздуха.

Транспирация отвечает приблизительно за 10% всей испаряющейся влаги.

Для того чтоб наглядно рассмотреть этот процесс мы провели опыт. Для опыта нам понадобились: белые цветы, пищевые красители, ёмкости для воды , нож, вода.

Согласно плана работы:

  1. Наполнили емкости водой

  2. Добавили в каждую из них пищевой краситель определенного цвета (в нашем случае синий, зеленый, желтый, красный, оранжевый и бирюзовый)

  3. Всем цветам срезали стебли под углом 45градусов в теплой воде, для большей наглядности эксперимента у одного цветка стебель разрезали на 2 части, не до конца.

  4. Поместили по одному цветку в каждую емкость с красителем, цветок с расщепленным стеблем поместили в 2 емкости с красителями красного и бирюзового цвета.

  5. В течение 24 часов наблюдали за цветами (См. Таблица 1).

  • Таблица 1
  • п/п
  • Прошедшее время
  • Описание наблюдений
  • 1
  • 1 час
  • Центр цветка проявил чуть заметную окраску, в основном бирюзовый цвет.
  • 2
  • 2 часа
  • Стали проявляться прожилки на других цветах
  • 3
  • 10 часов
  • С первого взгляда видно, что цветы приобрели разую окраску (лучше всего проявляется синий и бирюзовый цвет).
  • 4
  • 18 часов

Хорошо видны прожилки. На кончиках лепестков появляются ярко выраженные пятна.

  1. 5
  2. 24 часа
  3. Цветок с расщепленным стеблем окрашен наполовину, бирюзовый цвет видно хорошо, а красный очень плохо
  4. Объяснение опыта:

Вода поступает в растение из почвы через корневые волоски и молодые части корней и по сосудам разносится по всей его надземной части.

С передвигающейся водой разносятся по всему растению поглощенные корнем минеральные вещества (в проделанном опыте это видно по окрашенным лепесткам). Цветы, которые мы используем в эксперименте, лишены корней. Тем не менее, растение не теряет возможность поглощать воду.

Это возможно благодаря процессу транспирации — испарению воды растением. Основным органом транспирации является лист. В результате потери воды в ходе транспирации в клетках листьев возрастает сосущая сила. Транспирация спасает растение от перегрева.

Кроме того, испарение участвует в создании непрерывного тока воды с растворенными минеральными и органическими соединениями из корневой системы к надземным органам растения.

2.1. Назначение транспирации

В обычно протекающих процессах транспирация не является необходимой. Так если выращивать растения в условиях высокой и низкой влажности воздуха, то, естественно, в первом случае транспирация будет идти сознательно меньшей интенсивностью.

Однако рост растений будет одинаков или даже лучше там, где влажность воздуха выше, а транспирация меньше.

Известно, что большая часть всей поглощенной энергии тратится на транспирацию, которая в определенном объеме полезна растительному организму.

1.Транспирация спасает растение от перегрева, который ему грозит на прямом солнечном свете. Это особенно важно в связи с тем, что перегрев, разрушая хлоропласты, резко снижает процесс фотосинтеза. Именно благодаря высокой транспирирующей способности многие растения хорошо переносят повышенную температуру.

2.Транспирация создает непрерывный ток воды из корневой системы к листьям, который связывает все органы растения в единое целое.

3. С транспирационным током передвигаются растворимые минеральные и частично органические питательные вещества, при этом, чем интенсивнее транспирация, тем быстрее идет процесс передвижения.

Глава III. Адаптация к дефициту воды

Вода является необходимым условием существования всех живых организмов на Земле. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы, служит важнейшим исходным, промежуточным или конечным продуктом биохимических реакций.

Особая роль воды для наземных организмов (особенно растений) заключается в необходимости постоянного пополнения ее, из-за потерь при испарении. Поэтому вся эволюция наземных организмов шла в направлении приспособления к активному добыванию и экономному использованию влаги.

Наконец, для многих видов растений, животных, грибов и микроорганизмов вода является непосредственной средой их обитания.

Увлажненность местообитания и, как следствие, водообеснечение наземных организмов зависят, прежде всего, от количества осадков, их распределения по временам года, наличия водоемов, уровня грунтовых вод, запасов почвенной влаги и т.д.

Экологические группы растений по отношению к влаге и их адаптации к водному режиму. Высшие наземные растения, ведущие прикрепленный образ жизни, в большей степени, чем животные, зависят от обеспеченности воздуха влагой.

Гигрофиты — растения избыточно увлажненных местообитаний с высокой влажностью воздуха и почвы.

Наиболее типичные гигрофиты — травянистые растения влажных тропических лесов и нижних ярусов сырых лесов в разных климатических зонах (чистотел большой, недотрога обыкновенная, кислица обыкновенная и др.

), прибрежные виды (калужница болотная, плакун-трава, рогоз, камыш, тростник), растения сырых и влажных лугов, болот (белокрыльник болотный, сабельник болотный, вахта трехлистная, осоки), некоторые культурные растения.

Ксерофиты — растения сухих местообитаний, способные переносить продолжительную засуху, оставаясь физиологически активными.

Это растения пустынь, сухих степей, саванн, сухих субтропиков, песчаных дюн и сухих, сильно нагреваемых склонов.

Структурные и физиологические особенности ксерофитов нацелены на преодоление постоянного или временного недостатка влаги в почве или воздухе. Решение данной проблемы осуществляется тремя способами:

  • — эффективным добыванием (всасыванием) воды
  • — экономным ее расходованием
  • — способностью переносить большие потери воды

К группе ксерофитов относятся — растения с сочными мясистыми листьями или стеблями, содержащими сильно развитую водоносную ткань. Различают листовые суккуленты (агавы, алоэ, молодило, очитки) и стеблевые, у которых листья редуцированы, а надземные части представлены мясистыми стеблями (кактусы, некоторые молочаи и др.).

Корневая система поверхностная, мало — развитая, рассчитана на поглощение воды из верхних слоев почвы, увлажненных редко выпадающими дождями. В засуху корни могут отмирать, но после дождей быстро (за 2—4 дня) отрастают новые.

Мезофиты — занимают промежуточное положение между гигрофитами и ксерофитами. Они распространены в умеренно влажных зонах с умеренно теплым режимом и достаточно хорошей обеспеченностью минеральным питанием.

К мезофитам относятся растения лугов, травянистого покрова лесов, лиственные деревья и кустарники из областей умеренно влажного климата, а также большинство культурных растений и сорняки.

Для мезофитов характерна высокая экологическая пластичность, позволяющая им адаптироваться к меняющимся условиям внешней среды.

Специфичные пути регуляции водообмена позволили растениям занять самые различные по экологическим условиям участки суши. Многообразие способов приспособления лежит, таким образом, в основе распространения растений на Земле, где дефицит влаги является одной из главных проблем экологической адаптации.

Заключение

Из всего выше перечисленного можно вывести общее заключение, что при дефиците влаги растения могут адаптироваться т.е образование корневой системы, которая достигает влажных зон почвы; ограничение расхода воды на транспирацию; запасание воды в тканях растений.

Так как вода является основной составной частью растительных организмов. Вода — это та среда, в которой протекает все процессы обмена веществ.

Водный ток обеспечивает связь между отдельными органами растений. Питательные вещества передвигаются по растению в растворенном виде. Насыщенность водой, обеспечивает прочность тканей, сохранение структуры травянистых растений.

Таким образом, вода обеспечивает протекание процессов обмена, связь организма со средой. Для нормальной жизнедеятельности клетка должна быть насыщенна водой.

Основным источником влаги является вода, находящаяся в почве, и основным органом поглощения воды является корневая система. Роль этого органа прежде всего заключается в том, что благодаря огромной поверхности обеспечивается поступление воды в растения из возможно большого объема почвы.

  1. Список литературы
  2. Интернет-ресурс
  3. Электронный ресурс
  1. Художественная энциклопедия «Почему и Потому» [Электронный ресурс]. – Энциклопедия для детей дошкольного возраста ООО «РОСМЭН-ИЗДАТ» 2004 г. – 1 электронная книга

  2. Большая детская энциклопедия Том 9 «Растения и животные» [электронный ресурс] – ООО Мастермедиа 2006 г. 1 электронный оптический диск (CD-ROM).

Передвижение воды по растению

Вода, поглощенная клетками корня, под влиянием разности водных потенциалов, которые возникают благодаря транспирации, а также силе корневого давления, передвигается до проводящих путей ксилемы.

Согласно современным представлениям, вода в корневой системе передвигается не только по живым клеткам.

Апопласт — это свободное пространство корня, в которое входят межклетные промежутки, оболочки клеток, а также сосуды ксилемы.

Симпласт— это совокупность протопластов всех клеток, отграниченных полупроницаемой мембраной. Благодаря многочисленным плазмодемам, соединяющим между собой протопласт отдельных клеток, симпласт представляет единую систему.

Для того чтоб попасть в сосуды ксилемы, вода должна пройти через полупроницаемую мембрану и главным образом по апопласту и лишь частично по симпласту. Однако в клетках эндодермы передвижение воды идет, по-видимому, по симпласту. Далее вода поступает в сосуды ксилемы. Затем передвижение воды идет по сосудистой системе корня, стебля и листа.

Из сосудов стебля вода движется через черешок или листовое влагалище в лист. В листовой пластинке водопроводящие сосуды расположены в жилках. Жилки, постепенно разветвляясь, становятся более мелкими. Чем гуще сеть жилок, тем меньшее сопротивление встречает вода при передвижении к клеткам мезофилла листа.

Иногда мелких ответвлений жилок листа так много, что они подводят воду почти к каждой клетке. Вся вода в клетке находится в равновесном состоянии. Иначе говоря, в смысле насыщенности водой, имеется равновесие между вакуолью, цитоплазмой и клеточной оболочкой, их водные потенциалы равны. Вода передвигается от клетки к клетке благодаря градиенту сосущей силы.

Вся вода в растении представляет единую взаимосвязанную систему. Поскольку между молекулами воды имеются силы сцепления (когезия), вода поднимается на высоту значительно большую 10 м. Сила сцепления увеличивается, так как молекулы воды обладают большим сродством друг к другу. Силы сцепления обладают и между водой и стенками сосудов.

Степень натяжения водных нитей в сосудах зависит от соотношения процессов поглощения и испарения воды. Все это позволяет растительному организму поддерживать единую водную систему и не обязательно восполнять каждую каплю испаряемой воды.

В том случае, если в отдельные членики сосудов попадает воздух, они, по-видимому, выключается из общего тока проведения воды. Таков путь передвижения воды по растению.

Скорость перемещения воды по растению в течение суток изменяется. В дневные часы она на много больше. При этом разные виды растений различаются по скорости передвижения воды. Изменение температуры, введение метаболических ингибиторов не влияют на передвижение воды.

Вместе с тем этот процесс, как и следовало ожидать, очень сильно зависит от скорости транспирации и от диаметра водопроводящих сосудов. В более широких сосудах вода встречает меньшее сопротивление.

Однако надо учитывать, что в более широкие сосуды могут попасть пузырьки воздуха или произойти какие-либо иные нарушения тока воды.

Проводящая система растений

Проводящая система растений включает в себя такие понятия, как поступление, движение воды в растениях и испарение ее. Вода необходима растениям

Передвигается вода в растениях по клеткам коровой паренхимы до центрального цилиндра корня, затем по проводящей системе до листовой паренхимы и, наконец, по клеткам листовой паренхимы.

На первом участке пути вода передвигается осмотически благодаря повышению сосущей силы клеток корня. Движение воды от корневого волоска в сторону центральных сосудов

Этот отрезок пути очень небольшой (доли миллиметра), но передвижение воды по этому участку очень затруднено, так как воде приходится преодолевать сопротивление слоев живой протоплазмы. Это сопротивление примерно равно 1 атм на 1 мм пути, поэтому передвижение воды по живым клеткам на более значительные расстояния не обеспечивало бы потребности растения в воде.

Действительно, растения, у которых не развита проводящая система, например мхи, (подробнее: Как образуется болото) имеют незначительные размеры и приспособлены к жизни только во влажных условиях. У наземных растений в процессе эволюции образовалась проводящая ткань, которая устанавливает сообщение между всасывающими воду корнями и испаряющими воду листьями.

Проводящая воду ткань

Проводящая воду ткань состоит из сосудов, или трахей, и трахеидов; она начинается в центральном цилиндре корня, проходит через весь корень и стебель и заканчивается в виде тончайших разветвлений — жилок, пронизывающих всю листовую паренхиму.

Сосуды представляют собой мертвые трубки, образовавшиеся из живых клеток. В сосудах сохраняются поперечные перегородки на разном расстоянии (от нескольких миллиметров до метра в зависимости от вида растения) одна от другой. Исчезновение перегородок даже на небольшом расстоянии в тысячи раз ускоряет передвижение воды. Трахеиды это длинные мертвые клетки с заостренными концами.

Одревеснение, однако, никогда не бывает сплошным: на стенке сосудов остаются тонкие места — поры, по которым вода может перемещаться не только вверх по сосудам, но и в радиальном направлении.

Подъем воды по сосудам

Подъем воды по сосудам можно доказать следующим опытом. Если у срезанной и поставленной в воду ветки снять кольцо коры выше уровня воды, листья ее не завянут, так как сосуды расположены в древесине.

Движение воды по сосудам чаще всего направлено снизу вверх и называется поэтому восходящим током. Восходящий ток

Последний отрезок пути водного тока по листовой паренхиме идет по живым клеткам. Вода передвигается осмотическим путем по клеткам мезофилла листа до последних клеток, граничащих с межклеточниками. Этот отрезок пути, так же как и первый, очень короткий.

Если срезанную ветку растения герметически закрепить в стеклянной трубке, заполненной водой, и нижний конец ее опустить в сосуд со ртутью, то при испарении веткой воды ртуть в трубке будет подниматься. Из этого опыта ясно, что передвижение воды по растению обусловлено главным образом транспирацией, (подробнее: Транспирация у растений), а не только корневым давлением.

При испарении воды с поверхности листьев в клетках возникает сосущая сила. Величина ее тем больше, чем меньше воды остается в клетках листа.

Эта возникающая сосущая сила поддерживает постоянное передвижение воды в растении. Передвижение веществ в растениях

Силы, приводящие воду в движение

Таким образом, силы, приводящие воду в движение, находятся по концам проводящей системы: нагнетающий воду корень, работа которого получила название нижнего концевого двигателя, и сила присасывания воды листьями — верхний концевой двигатель. Оба двигателя действуют в одном направлении и могут заменять и дополнять друг друга.

Во время сильной инсоляции летом и при, засухе водоснабжение растения идет за счет присасывающего действия транспирации.

Корневое давление

Когда же почва богата водой, а воздух водяными парами, подъем воды обеспечивается силой корневого давления, (подробнее: Корни обеспечивают растение водой).

Следовательно, в зависимости от условий внешней среды главная роль принадлежит то одному, то другому концевому двигателю.

Водные нити не рвутся под влиянием своей тяжести, несмотря на то, что при сильной транспирации они находятся в состоянии натяжения.

Это объясняется силой сцепления молекул воды, достигающей 300—350 атм, а так как в сосудах нет воздуха, то целостность водного тока не прерывается.

Скорость водного тока

Скорость водного тока зависит от строения проводящих воду элементов. Вода быстрее передвигается по сосудам, причем скорость движения ее зависит от диаметра сосудов: чем он меньше, тем медленнее будет передвигаться вода. Движение воды в растениях происходит благодаря работе двух концевых двигателей, верхнего и нижнего, и сил сцепления, обеспечивающих целостность водных нитей.

Современная ботаника : Глава 27. Движение воды и растворенных веществ в растениях

  В растениях более 90% воды, поглощенной корнями, выделяется в воздух в виде водяного пара. Этот процесс называют транспирацией, и основная часть воды, транспирируемой сосудистыми растениями, испаряется через устьица листьев.

  Поглощение воды происходит преимущественно через корневые волоски, которые образуют огромную всасывающую поверхность. У некоторых растений, когда корни поглощают воду из почвы и транспортируют ее в ксилему, вода в ксилеме создает положительное давление, называемое корневым.

Это осмотическое поглощение зависит от переноса неорганических ионов из почвы в ксилему, осуществляемого живыми клетками корня, и может привести к явлению, называемому гуттацией. Оно заключается в том, что вода выжимается через специальные отверстия на концах или краях листьев.

В основном вода перемещается по апопластному пути через эпидерму и кору, пока не достигнет эндодермы, где дальнейшее ее движение по апопласту перекрывается поясками Каспари. На пути к ксилеме вода должна пройти через плазматические мембраны и протопласты эндодермальных клеток.

  Из корней вода поднимается к листьям по ксилеме. Распространенной и широко принятой теорией передвижения воды к вершинам высоких растений по ксилеме является теория когезии-адгезии-натяжения.

Согласно этой теории, вода в сосудах испытывает натяжение, поскольку благодаря сцеплению молекул образует непрерывные столбы, которые «тянутся» вверх в результате испарения. Показано, что вода обладает достаточной прочностью на разрыв, чтобы выдержать натяжение, создаваемое в трубках малого диаметра.

Представление о натяжении воды в ксилеме подтверждают и те факты, что движение воды в деревьях начинается с самых верхних ветвей и ствол дерева слегка сжимается, когда вода начинает двигаться.

  На скорость транспирации влияют такие факторы, как концентрация углекислоты в межклетниках (и содержание углекислоты в окружающем лист воздухе), свет, температура, атмосферная влажность, токи воздуха, доступность почвенной воды. Большинство этих факторов воздействует на устьица.

Открывание и закрывание устьиц контролируется изменением тургора замыкающих клеток, которое тесно коррелирует с изменениями концентрации ионов калия в этих клетках. В движении устьиц играют роль абсцизовая кислота и синий свет.

Устьица открываются, когда в замыкающих клетках увеличивается тургор, и закрываются, когда он снижается.

  Неорганические вещества почвенных растворов доступны растениям в форме ионов. Для накопления необходимых ионов растения используют метаболическую энергию.

Большинство ионов поглощается в процессе активного транспорта, другие переносятся через плазматическую мембрану пассивно благодаря водному потенциалу, который создается за счет активно двигающихся ионов и их насосов.

Неорганические ионы следуют в основном по симпластному пути из эпидермы в ксилему.

  Исследованию передвижения веществ по флоэме значительно способствовало использование тлей и радиоактивных меток.

Анализы сока ситовидных трубок показывают, что он содержит сахар – главным образом сахарозу – и небольшое количество азотистых веществ.

Скорость продольного транспорта веществ по флоэме намного превышает нормальную скорость диффузии сахарозы в воде – обычно она составляет от 50 до 100 см/ч.

  Согласно гипотезе тока под давлением, ассимиляты перемещаются от источника к месту потребления (накопления) по градиенту тургорного давления, который развивается осмотически.

Сахара активно секретируются (загружаются) в ситовидные трубки и поглощаются (разгружаются) из них клетками-спутниками и паренхимными клетками, расположенными соответственно в местах производства и потребления.

Ситовидные трубки выполняют пассивную роль.

Ссылка на основную публикацию
Adblock
detector