Поглощение воды корнями. Апопластный транспорт в корне.

Филогенетически корень возник позже стебля и листа — в связи с переходом растений к жизни на суше и вероятно, произошёл от корнеподобных подземных веточек. У корня нет ни листьев, ни в определённом порядке расположенных почек.

Для него характерен верхушечный рост в длину, боковые разветвления его возникают из внутренних тканей, точка роста покрыта корневым чехликом. Корневая система формируется на протяжении всей жизни растительного организма.

Иногда корень может служить местом отложения в запас питательных веществ. В таком случае он видоизменяется.

Главный корень образуется из зародышевого корешка при прорастании семени. От него отходят боковые корни.

  • Придаточные корни развиваются на стеблях и листьях.
  • Боковые корни представляют собой ответвления любых корней.
  • Каждый корень (главный, боковые, придаточные) обладает способностью к ветвлению, что значительно увеличивает поверхность корневой системы, а это способствует лучшему укреплению растения в почве и улучшению его питания.

Поглощение воды корнями. Апопластный транспорт в корне.

Типы корневых систем

Различают два основных типа корневых систем: стержневая, имеющая хорошо развитый главный корень, и мочковатая. Мочковатая корневая система состоит из большого числа придаточных корней, одинаковых по величине. Вся масса корней состоит из боковых или придаточных корешков и имеет вид мочки.

Сильно разветвлённая корневая система образует огромную поглощающую поверхность. Например,

  • общая длина корней озимой ржи достигает 600 км;
  • длина корневых волосков — 10 000 км;
  • общая поверхность корней — 200 м2.

Это во много раз превышает площадь надземной массы.

Поглощение воды корнями. Апопластный транспорт в корне.

Если у растения хорошо выражен главный корень и развиваются придаточные корни, то формируется корневая система смешанного типа (капуста, помидор).

Внешнее строение корня. Внутреннее строение корня

Зоны корня

Поглощение воды корнями. Апопластный транспорт в корне.

Корневой чехлик

Корень растёт в длину своей верхушкой, где находятся молодые клетки образовательной ткани. Растущая часть покрыта корневым чехликом, защищающим кончик корня от повреждений, и облегчает продвижение корня в почве во время роста.

Последняя функция осуществляется благодаря свойству внешних стенок корневого чехлика покрываться слизью, что уменьшает трение между корнем и частичками почвы. Могут даже раздвигать частички почвы. Клетки корневого чехлика живые, часто содержат зёрна крахмала. Клетки чехлика постоянно обновляются за счёт деления.

Участвует в положительных геотропических реакциях (направление роста корня к центру Земли).

Поглощение воды корнями. Апопластный транспорт в корне.

Клетки зоны деления активно делятся, протяженность этой зоны у разных видов и у разных корней одного и того же растения неодинакова.

За зоной деления расположена зона растяжения (зона роста). Протяжённость этой зоны не превышает нескольких миллиметров.

По мере завершения линейного роста наступает третий этап формирования корня — его дифференциация, образуется зона дифференциации и специализации клеток (или зона корневых волосков и всасывания). В этой зоне уже различают наружный слой эпиблемы (ризодермы) с корневыми волосками, слой первичной коры и центральный цилиндр.

Строение корневого волоска

Корневые волоски — это сильно удлинённые выросты наружных клеток, покрывающих корень. Количество корневых волосков очень велико (на 1 мм2 от 200 до 300 волосков). Их длина достигает 10 мм. Формируются волоски очень быстро (у молодых сеянцев яблони за 30-40 часов). Корневые волоски недолговечны. Они отмирают через 10-20 дней, а на молодой части корня отрастают новые.

Это обеспечивает освоение корнем новых почвенных горизонтов. Корень непрерывно растёт, образуя всё новые и новые участки корневых волосков. Волоски могут не только поглощать готовые растворы веществ, но и способствовать растворению некоторых веществ почвы, а затем всасывать их.

Участок корня, где корневые волоски отмерли, некоторое время способен всасывать воду, но затем покрывается пробкой и теряет эту способность.

Поглощение воды корнями. Апопластный транспорт в корне.

Оболочка волоска очень тонкая, что облегчает поглощение питательных веществ. Почти всю клетку волоска занимает вакуоль, окружённая тонким слоем цитоплазмы. Ядро находится в верхней части клетки.

Вокруг клетки образуется слизистый чехол, который содействует склеиванию корневых волосков с частицами почвы, что улучшает их контакт и повышает гидрофильность системы.

Поглощению способствует выделение корневыми волосками кислот (угольной, яблочной, лимонной), которые растворяют минеральные соли.

Корневые волоски играют и механическую роль — они служат опорой верхушке корня, которая проходит между частичками почвы.

Под микроскопом на поперечном срезе корня в зоне всасывания видно его строение на клеточном и тканевом уровнях. На поверхности корня — ризодерма, под ней — кора. Наружный слой коры — экзодерма, вовнутрь от неё — основная паренхима.

Её тонкостенные живые клетки выполняют запасающую функцию, проводят растворы питательных веществ в радиальном направлении — от всасывающей ткани к сосудам древесины. В них же происходит синтез ряда жизненно важных для растения органических веществ. Внутренний слой коры — эндодерма.

Растворы питательных веществ, поступающие из коры в центральный цилиндр через клетки эндодермы, проходят только через протопласт клеток.

Поглощение воды корнями. Апопластный транспорт в корне.

Кора окружает центральный цилиндр корня. Она граничит со слоем клеток, долго сохраняющих способность к делению. Это перицикл. Клетки перицикла дают начало боковым корням, придаточным почкам и вторичным образовательным тканям. Вовнутрь от перицикла, в центре корня, находятся проводящие ткани: луб и древесина. Вместе они образуют радиальный проводящий пучок.

Проводящая система корня проводит воду и минеральные вещества из корня в стебель (восходящий ток) и органические вещества из стебля в корень (нисходящий ток). Состоит она из сосудисто-волокнистых пучков.

Основными слагаемыми частями пучка являются участки флоэмы (по ним вещества передвигаются к корню) и ксилемы (по которым вещества передвигаются от корня).

Основные проводящие элементы флоэмы — ситовидные трубки, ксилемы — трахеи (сосуды) и трахеиды.

Процессы жизнедеятельности корня

Всасывание воды корневыми волосками из почвенного питательного раствора и проведение её в радиальном направлении по клеткам первичной коры через пропускные клетки в эндодерме к ксилеме радиального проводящего пучка. Интенсивность поглощения воды корневыми волосками называется сосущей силой (S), она равна разнице между осмотическим (P) и тургорным (T) давлением: S=P-T.

Когда осмотическое давление равно тургорному (P=T), то S=0, вода перестаёт поступать в клетку корневого волоска. Если концентрация веществ почвенного питательного раствора будет выше, чем внутри клетки, то вода будет выходить из клеток и наступит плазмолиз — растения завянут.

Такое явление наблюдается в условиях сухости почвы, а также при неумеренном внесении минеральных удобрений. Внутри клеток корня сосущая сила корня возрастает от ризодермы по направлению к центральному цилиндру, поэтому вода движется по градиенту концентрации (т. е.

из места с большей её концентрацией в место с меньшей концентрацией) и создаёт корневое давление, которое поднимает столбик воды по сосудам ксилемы, образуя восходящий ток. Это можно обнаружить на весенних безлистных стволах, когда собирают «сок», или на срезанных пнях.

Истекание воды из древесины, свежих пней, листьев, называется «плачем» растений. Когда распускаются листья, то они тоже создают сосущую силу и притягивают воду к себе — образуется непрерывный столбик воды в каждом сосуде — капиллярное натяжение.

Корневое давление является нижним двигателем водного тока, а сосущая сила листьев — верхним. Подтвердить это можно с помощью несложных опытов.

Всасывание воды корнями

Цель: выяснить основную функцию корня.

Что делаем: растение, выращенное на влажных опилках, отряхнём его корневую систему и опустим в стакан с водой его корни. Поверх воды для защиты её от испарения нальём тонкий слой растительного масла и отметим уровень.

Поглощение воды корнями. Апопластный транспорт в корне.

Что наблюдаем: через день-два вода в ёмкости опустилась ниже отметки.

Поглощение воды корнями. Апопластный транспорт в корне.

Результат: следовательно, корни всосали воду и подали её наверх к листьям.

Можно ещё проделать один опыт, доказывающий всасывание питательных веществ корнем.

Что делаем: срежем у растения стебель оставив пенёк высотой 2-3 см. На пенёк наденем резиновую трубку длиной 3 см, а на верхний конец наденем изогнутую стеклянную трубку высотой 20-25 см.

Что наблюдаем: вода в стеклянной трубке поднимается, и вытекает наружу.

Результат: это доказывает, что воду из почвы корень всасывает в стебель.

Поглощение воды корнями. Апопластный транспорт в корне.

  1. А влияет ли температура воды на интенсивность всасывания корнем воды?
  2. Цель: выяснить, как температура влияет на работу корня.
  3. Что делаем: один стакан должен быть с тёплой водой (+17-18ºС), а другой с холодной (+1-2ºС).
  4. Что наблюдаем: в первом случае вода выделяется обильно, во втором — мало, или совсем приостанавливается.
  5. Результат: это является доказательством того, что температура сильно влияет на работу корня.

Поглощение воды корнями. Апопластный транспорт в корне.

Тёплая вода активно поглощается корнями. Корневое давление повышается.

Холодная вода плохо поглощается корнями. В этом случае корневое давление падает.

Физиологическая роль минеральных веществ очень велика. Они являются основой для синтеза органических соединений, а также факторами, которые изменяют физическое состояние коллоидов, т.е.

непосредственно влияют на обмен веществ и строение протопласта; выполняют функцию катализаторов биохимических реакций; воздействуют на тургор клетки и проницаемость протоплазмы; являются центрами электрических и радиоактивных явлений в растительных организмах.

Установлено, что нормальное развитие растений возможно только при наличии в питательном растворе трёх неметаллов — азота, фосфора и серы и — и четырёх металлов — калия, магния, кальция и железа. Каждый из этих элементов имеет индивидуальное значение и не может быть заменён другим.

Это макроэлементы, их концентрация в растении составляет 10-2–10%. Для нормального развития растений нужны микроэлементы, концентрация которых в клетке составляет 10-5–10-3%. Это бор, кобальт, медь, цинк, марганец, молибден др. Все эти элементы есть в почве, но иногда в недостаточном количестве.

Поэтому в почву вносят минеральные и органические удобрения.

Растение нормально растёт и развивается в том случае, если в окружающей корни среде будут содержаться все необходимые питательные вещества. Такой средой для большинства растений является почва.

Дыхание корней

Для нормального роста и развития растения необходимо чтобы к корню поступал свежий воздух. Проверим, так ли это?

Цель: нужен ли воздух корню?

Что делаем: возьмём два одинаковых сосуда с водой. В каждый сосуд поместим развивающие проростки. Воду в одном из сосудов каждый день насыщаем воздухом с помощью пульверизатора. На поверхность воды во втором сосуде нальём тонкий слой растительного масла, так как оно задерживает поступление воздуха в воду.

Что наблюдаем: через некоторое время растение во втором сосуде перестанет расти, зачахнет, и в конце концов погибнет.

Результат: гибель растения наступает из-за недостатка воздуха, необходимого для дыхания корня.

Читайте также:  Брилинта таблетки 90 мг - инструкция по применению, формы выпуска, аналоги и отзывы

Видоизменения корней

У некоторых растений в корнях откладываются запасные питательные вещества. В них накапливаются углеводы, минеральные соли, витамины и другие вещества. Такие корни сильно разрастаются в толщину и приобретают необычный внешний вид. В формировании корнеплодов участвуют и корень, и стебель.

Корнеплоды

Если запасные вещества накапливаются в главном корне и в основании стебля главного побега, образуются корнеплоды (морковь). Растения, образующие корнеплоды, в основном двулетники. В первый год жизни они не цветут и накапливают в корнеплодах много питательных веществ. На второй — они быстро зацветают, используя накопленные питательные вещества и образуют плоды и семена.

Корневые клубни

У георгина запасные вещества накапливаются в придаточных корнях, образуя корневые клубни.

Бактериальные клубеньки

Своеобразно изменены боковые корни у клевера, люпина, люцерны. В молодых боковых корешках поселяются бактерии, что способствует усвоению газообразного азота почвенного воздуха. Такие корни приобретают вид клубеньков. Благодаря этим бактериям эти растения способны жить на бедных азотом почвах и делать их более плодородными.

Ходульные

У пандуса, произрастающего в приливно-отливной зоне, развиваются ходульные корни. Они высоко над водой удерживают на зыбком илистом грунте крупные облиственные побеги.

Воздушные

У тропических растений, живущих на ветвях деревьев, развиваются воздушные корни. Они часто встречаются у орхидей, бромелиевых, у некоторых папоротников. Воздушные корни свободно висят в воздухе, не достигая земли и поглощая попадающую на них влагу от дождя или росы.

Втягивающие

У луковичных и клубнелуковичных растений, например у крокусов, среди многочисленных нитевидных корней имеется несколько более толстых, так называемых втягивающих, корней. Сокращаясь, такие корни втягивают клубнелуковицу глубже в почву.

Столбовидные

У фикуса развиваются столбовидные надземные корни, или корни-подпорки.

Почва для растений является средой, из которой оно получает воду и элементы питания. Количество минеральных веществ в почве зависит от специфических особенностей материнской горной породы, деятельности организмов, от жизнедеятельности самих растений, от типа почвы.

Почвенные частицы конкурируют с корнями за влагу, удерживая её своей поверхностью. Это так называемая связанная вода, которая подразделяется на гигроскопическую и плёночную. Удерживается она силами молекулярного притяжения. Доступная растению влага представлена капиллярной водой, которая сосредоточена в мелких порах почвы.

Между влагой и воздушной фазой почвы складываются антагонистические отношения. Чем больше в почве крупных пор, тем лучше газовый режим этих почв, тем меньше влаги удерживает почва.

Наиболее благоприятный водно-воздушный режим поддерживается в структурных почвах, где вода и воздух находятся одновременно и не мешают друг другу — вода заполняет капилляры внутри структурных агрегатов, а воздух — крупные поры между ними.

Характер взаимодействия растения и почвы в значительной степени связан с поглотительной способностью почвы — способностью удерживать или связывать химические соединения.

Микрофлора почвы разлагает органические вещества до более простых соединений, участвует в формировании структуры почвы. Характер этих процессов зависит от типа почвы, химического состава растительных остатков, физиологических свойств микроорганизмов и других факторов. В формировании структуры почвы принимают участие почвенные животные: кольчатые черви, личинки насекомых и др.

В результате совокупности биологических и химических процессов в почве образуется сложный комплекс органических веществ, который объединяют термином «гумус».

Метод водных культур

В каких солях нуждается растение, и какое влияние оказывают они на рост и развитие его, было установлено на опыте с водными культурами. Метод водных культур — это выращивание растений не в почве, а в водном растворе минеральных солей. В зависимости от поставленной цели в опыте можно исключить отдельную соль из раствора, уменьшить или увеличить ее содержание.

Было выяснено, что удобрения, содержащие азот, способствуют росту растений, содержащие фосфор — скорейшему созреванию плодов, а содержащие калий — быстрейшему оттоку органических веществ от листьев к корням. В связи с этим содержащие азот удобрения рекомендуется вносить перед посевом или в первой половине лета, содержащие фосфор и калий — во второй половине лета.

С помощью метода водных культур удалось установить не только потребность растения в макроэлементах, но и выяснить роль различных микроэлементов.

В настоящее время известны случаи, когда выращивают растения методами гидропоники и аэропоники.

Гидропоника — выращивание растений в сосудах, заполненных гравием. Питательный раствор, содержащий необходимые элементы, подаётся в сосуды снизу.

Аэропоника — это воздушная культура растений. При этом способе корневая система находится в воздухе и автоматически (несколько раз в течение часа) опрыскивается слабым раствором питательных солей.

* * *

Как растение поглощает воду корнями

Поглощение корнями воды и минеральных веществ — наиболее важная их функция, неразрывно связана со всем комплексом процесса обмена веществ растительного организма.

Вода, поглощенная корневыми волосками, проделывает сложный путь по растению. К сожалению, факторы, обеспечивающие как процесс поглощения воды корневыми волосками, так и ее перемещение, еще изучены недостаточно.

Поглощение воды корнями. Апопластный транспорт в корне.

Механизм поглощения воды

Имеется много различных теорий, объясняющих эти процессы. Согласно гидростатическим законам величина тургорного давления во всех частях клетки одинакова, поэтому всасывающая сила больше в той части, где больше осмотическое давление/

S = P — T, где S — всасывающая сила; P — осмотическое давление; T — тургорное давление.

В механизме поглощения питательных веществ корнем различают два качественно различных процесса: метаболический (активный) и неметаболический (пассивный).

Метаболическое поглощение питательных веществ связывается, в первую очередь, с дыханием клеток. Дыхание определяет существование активной поверхности цитоплазмы, скорость ее обновления, насыщенность акцепторами минеральных соединений, возможность взаимодействия с ними.

Неметаболический механизм поглощения веществ связывают с проникновением их в клетку по градиенту концентрации. Этот процесс не зависит от обмена веществ живой клетки. Основной движущей силой его признают диффузию и осмос.

Через корневые волоски вода поступает в клетки основной ткани корня. Далее через пропускные клетки — в сосуды центрального цилиндра, а затем в надземную часть растения по сосудам проводящей зоны. Сосуды корня в надземной части растения становятся сосудами стебля. Место перехода корня в стебель несколько утолщено и называется корневой шейкой.

Источник

На рисунке показано первичное строение корня типичного двудольного растения. Основная масса воды поглощается более молодыми частями корня в зоне корневых волосков. По мере роста корня в почве на нем постоянно образуются новые корневые волоски, а старые отмирают.

Новые корневые волоски возникают на некотором расстоянии позади зоны растяжения. Эти волоски представляют собой трубчатые выросты эпидермальных клеток (рис. 13.17), существенно увеличивающие поверхность, способную поглощать воду и минеральные соли.

Они вступают в тесный контакт с частицами почвы.

На рисунке схематично показаны пути движения воды по корню. В корне существует градиент водного потенциала — от более высокого в клетках, образующих корневые волоски, к более низкому в клетках, примыкающих к ксилеме. Этот градиент поддерживается двумя способами:

1) за счет движения воды вверх по ксилеме, при котором, как мы уже говорили, в ксилеме создается натяжение (отрицательное давление) и тем самым понижается водный потенциал ксилемного сока;

2) за счет того, что осмотический потенциал ксилемного сока более низкий (более отрицательный) по сравнению с осмотическим потенциалом разбавленного почвенного раствора.

Поглощение воды корнями. Апопластный транспорт в корне.

Вода движется через корень по тем же путям, что и в листьях, а именно по апопласту, симпласту и через вакуоли.

По мере того как вода поднимается вверх по корневой ксилеме, ее замещает вода из окружающих паренхимных клеток, например из клетки 1 на рисунке.

В результате водный потенциал этой клетки снижается и в нее устремляется вода из соседней клетки 2 благодаря осмосу или просто по симпласту, как описано в разд. 13.3.2 для мезофилла листа.

Тогда в свою очередь снижается и водный потенциал клетки 2, в нее начинает поступать вода из клетки 3 и так далее через весь корень до самого эпидермиса, образующего волоски.

Водный потенциал почвенного раствора выше, чем в клетках эпидермиса и в корневых волосках. Следовательно, вода проникает в корень извне путем осмоса.

Апопластный транспорт в корне

Апопластный транспорт в корне происходит примерно так же, как в листьях, но с одним существенным отличием. Когда вода, продвигаясь по клеточным стенкам, достигает эндодермы, путь ей преграждает водонепроницаемое вещество, называемое суберином.

Оно откладывается по периметру эндодермальной клетки в ее антиклинальных стенках, образуя так называемый поясок Каспари (рис. 13.18, Б). В результате вода с растворенными в ней веществами (в основном диссоциированными на ионы солями) должна сначала проникнуть через плазмалемму этой клетки в ее цитоплазму, а потом выйти «с другой стороны».

Таким способом клетки эндодермы контролируют и регулируют движение растворов по пути к ксилеме. Такой контроль необходим для защиты побегов от проникновения в них токсичных веществ, бо-лезнетвореных бактерий, грибов и других вредных агентов.

С возрастом отложение суберина в эндодермальных клетках корня увеличивается, и это препятствует нормальному выходу воды и растворенных солей через внутренние танген-тальные клеточные стенки (рис. 13.18, Б).

Однако в таких стенках могут сохраняться поры и проходящие через них плазмодесмы и, кроме того, остаются так называемые «пропускные» клетки, у которых не происходит дополнительного утолщения стенки и через которые свободно проходят вода и растворенные вещества. Количественное соотношение в корне апопластного, симпластного и вакуолярного транспортов воды не известно.

Источник

Поглощение корнем воды

Как вода поступает из почвы в растение? Возьмем комнатное растение бальзамин, растущее в цветочном вазоне, и срежем его стебель так, чтобы остался пенек высотой 2—3 см. На пенек наденем резиновую трубку длиной 3 см.

  • Бальзамин можно заменить трех-, четырехнедельным растением, выращенным из семени подсолнечника или фасоли.
  • В резиновую трубку нальем немного воды и на ее верхний конец наденем стеклянную трубку высотой 20—25 см, изогнутую в виде колена.
  • В почву вазона воткнем палочку и привяжем к ней стеклянную трубку.

Через некоторое время вода в стеклянной трубке поднимется и даже будет вытекать наружу. Откуда берется вода, вытекающая из трубки? Воду из почвы всасывает корень. По сосудам корня вода под давлением поступает в оставшийся пенек, а затем в трубку. Это давление называют корневым. Так под действием корневого давления вода из корня поступает в стебель.

Читайте также:  Диффузионный потенциал. Трансмембранный градиент концентрации калия.

Если почву в вазоне с обрезанным растением полить тепловатой водой, то вода начнет быстро подниматься по трубке и вытекать из нее. Наоборот, после полива очень холодной водой вода перестанет подниматься.

Проведенный опыт убеждает в том, что поглощение корнем воды зависит от температуры. Холодная вода плохо всасывается корнями. Вот почему нельзя поливать растения холодной водой.

Без воды растения жить не могут. Вода входит в состав клеток растения. Она необходима для набухания и прорастания семян. Но особенно много воды требуется взрослым растениям во время их роста.

Когда начинают созревать плоды, потребность растений в воде резко уменьшается и поливать их прекращают. В садах средней полосы, например, растения перестают поливать уже в конце июля. При избытке воды созревание плодов и рост растений затягиваются. Начинают расти и молодые побеги. Побеги, появившиеся у плодовых деревьев осенью, не успевают одревеснеть и зимой вымерзают.

Овощные культуры и цветочно-декоративные растения наших садов, парков, цветников и скверов лучше поливать вечером, когда спадает жара.

Поглощение воды корнями. Апопластный транспорт в корне.

Рис. 39. Схема опыта, демонстрирующего корневое давление.

Поглощение воды корнями. Апопластный транспорт в корне.

Рис. 40. Правильная (вверху) и неправильная поливка растений.

Поглощение воды корнями. Апопластный транспорт в корне.

Рис. 41. Дождевальная установка.

Лейку при поливке следует держать близко к поверхности делянки или горшка с растением, чтобы почва не размывалась струей воды. Помните, что лучше поливать растения реже и обильнее, чем чаще, но понемногу.

Поливать большие площади из леек невозможно. Поэтому в крупных колхозах и совхозах применяют специальные дождевальные установки.

Во многих районах нашей страны земли приходится орошать. Для этого сооружают оросительные каналы, устраивают пруды и водоемы. Чтобы сохранить влагу в почве и защитить посевы от ветров-суховеев, сажают лесные полосы.

Движение воды в корне

Движение воды в радиальном направлении из почвенного раствора в проводящие элементы ксилемы осуществляется как непосредственно через клетки, так и по апопласту тканей корня (рис. 9).

Поглощение воды корнями. Апопластный транспорт в корне.

Рис. 9 Транспортная модель корня

(по E. Steudle and C.A. Peterson, 1998)

Апопласт представлен единой системой клеточных стенок и межклеточных полостей (межклетников). Транспорт воды через клетки получил название движение воды от клетки к клетке («cell to cell»).

В данном случае вода может идти двумя путями: может пересекать мембраны и идти по непрерывному цитоплазматическому пути через соединяющие соседние клетки плазмодесмы. Единая система, объединяющая с помощью плазмодесм протопласты растительных клеток, называется симпластом.

Таким образом, путь движения воды от клетки к клетке подразделяется на трансмембранный и симпластический. В трансмембранном движении воды важную роль играют аквапорины, образующие водные каналы.

В итоге, движение воды от клеток ризодермы к сосудам ксилемы корня может осуществляться по трем параллельным направлениям: 1) через клеточные мембраны (трансмембранный путь); 2) по цитоплазме и плазмодесмам (симпластный путь); 3) по клеточным стенкам и межклетникам (апопластный путь).

Эти три пути движения воды неавтономны: вода может перемещаться по комбинированным траекториям. Например, пройти некоторый путь по апопласту, затем пересечь плазматическую мембрану и далее передвигаться от клетки к клетке по симпласту.

В настоящее время отсутствуют экспериментальные подходы, которые позволили бы количественно оценить трансмембранный и симпластный потоки воды в корне. Однако имеющиеся данные позволяют предположить, что трансмембранные потоки значительно превосходят симпластные.

Из-за отсутствия возможности разделить эти два потока, как правило, пользуются упрощенной транспортной моделью, в которой рассматривают два параллельных пути – путь от клетки к клетке и апопластный путь. Оба потока существуют в растении одновременно.

Вклад того и/или иного пути в суммарный поток воды определяется многими факторами: видом растения, его возрастом, условиями выращивания и др.

При апопластном транспорте вода ни разу не пересекает мембраны, а сам апопласт не обладает свойством полупроницаемости. Это означает, что осмотические явления не вовлечены в формирование движущих сил апопластного транспорта воды.

В этой связи ток воды через апопласт имеет гидравлическое происхождение, так как движущей силой для него служит преимущественно градиент гидростатического давления (∆Р), и ток воды по апопласту называется гидравлическим.

Основным процессом, приводящим к формированию ∆Р, при апопластном (гидравлическом) транспорте является транспирация.

При отсутствии водного дефицита в дневное время, когда устьица открыты и интенсивность транспирации высока, поток воды через апопласт в значительной степени превышает поток через клетки. При низкой интенсивности транспирации преобладающим становится движение воды от клетки к клетке.

При движении воды от клетки к клетке, когда вода на своем пути пересекает мембраны, явление осмоса играет определяющую роль. Ток воды в этом случае называется осмотическим, хотя градиент водного потенциала для него включает не только осмотическую, но и гидравлическую составляющую. Градиент водного потенциала между двумя клетками равен:

  • ∆Ψ = ∆Р — δ∆π,
  • где ∆π, ∆Р – разности тургорного и осмотического давления между двумя клетками;
  • δ – коэффициент отражения мембран (он стремится к единице, поэтому ∆Ψ = ∆Р — ∆π).
  • Следует обратить внимание на то, что ∆Р при апопластном токе – это градиент гидростатического давления, создаваемого натяжением жидкости в сосудах ксилемы, а ∆Р при транспорте воды от клетки к клетке – это градиент тургорного давления в клетках корня.

На пути радиального транспорта воды в корне по апопласту расположена эндодерма с поясками Каспари. Основным химическим компонентом поясков Каспари является не суберин, как полагали ранее, а лигнин. Лигнин – это гидрофильное соединение, поэтому он не может препятствовать апопластному пути движения воды.

До недавнего времени считали, что движение воды по апопласту в радиальном направлении корня прерывается на уровне эндодермы. Поэтому, чтобы продолжить свое движение в радиальном направлении корня, вода должна перейти в симпласт. Некоторое количество суберина в поясках Каспари может уменьшить гидравлическую проводимость.

Таким образом, апопласт эндодермы не оказывает существенного влияния на водный ток, однако является препятствием для движения ионов. Так, на молодых корнях кукурузы было показано, что повреждение эндодермы приводит к выходу ксилемного раствора через повреждение из компартмента с высоким осмотическим давлением (центральный цилиндр) в компартмент с низким давлением (внешняя среда).

Эти результаты подтвердили давно предполагавшуюся роль эндодермы как барьера для обратной диффузии ионов из центрального цилиндра в апопласт тканей коры.

Поглощение воды корнями. Апопластный транспорт в корне.

Механизм поглощения и передачи воды и минеральных веществ

Корень и корневые системы. Морфологическое и анатомическое строение корня в связи с его функциями.

Механизм поглощения и передачи воды и минеральных веществ.

Корень — вегетативный орган растения осевого строения, обладающий радиальной симметрией и верхушечным ростом. Для удержания растения в почве корень образует многочисленные разветвления. Основные функции корня следующие:

удержание растения в почве (закрепление в субстрате); поглощение и проведение воды и растворенных в ней минеральных, а также органических веществ (например, глюкозы и др.); вегетативное размножение (корнеплоды, корнеклубни, корнеотпрыски); запасание питательных веществ.

М.С.Корень растет верхушкой вниз — действует сила притяжения земли. Кончик каждого корня покрыт защитным корневым чехликом. Наружная часть чехлика, состоящая из грубых клеток, по мере продвижения корня в земле, слущивается и нарастает заново.

Точка роста состоит из активно делящихся клеток, дающих начало всем тканям корня. За этой зоной следует зона растяжения — здесь клетки быстро растут в длину, поглощая много воды, но клетки еще не дифференцируются. Выше зоны растяжения располагается зона корневых волосков или зона дифференциации.

Корневой волосок — вырост эпидермиальной клетки — служит для поглощения воды и растворенных в ней минеральных солей. Корневые волоски значительно увеличивают всасывающую поверхность корня. Они недолговечны и с удлинением корня засыхают и отмирают.

За зоной дифференциации располагается зона проведения, на ней нет корневых волосков, но образуются боковые корни.

А.С. На поперечном срезе корня в зоне корневых волосков можно видеть его внутреннее строение. Самый наружный слой клеток — эпидермис (ризодерма, т.е. эпидермис, образующий корневые волоски), который защищает нижележащие клетки. Под эпидермисом располагается кора, состоящая их крупных, тонкостенных, более или менее округленных клеток паренхимы.

По коре передвигаются вода и минеральные вещества, а также в ней запасаются питательные вещества. К коре примыкает однослойная эндодерма, отделяющая кору от сердцевины с проводящими тканями. К эндодерме примыкает перицикл — один слой паренхимы клеток, способных превращаться в меристематические клетки и продуцировать боковые корни.

Внутри перицикла (осевой цилиндр) находится ксилема, часто имеющая вид звезды или спиц колеса, состоящая из трахеид и сосудов (трахей). Между лучами ксилемы расположены клетки флоэмы — ситовидные трубки.

В корнях деревьев, кустарников и других многолетних растений между флоэмой и ксилемой располагается слой камбия, за счет которого образуются дополнительные слои флоэмы и ксилемы (корень растет в толщину).

Ф.Механизм поглощения воды и минеральных веществ корнем.

Зона наиболее интенсивного поглощения воды совпадает с зоной развития корневых волосков. Основная функция корневых волосков заключается в увеличении всасывающей поверхности корня.

Выше зоны корневых волосков скорость всасывания воды снижается из-за опробковевших клеток феллемы, покрывающей проводящую зону корня (при вторичном росте). Однако и через опробковевшие участки корней вода частично транспортируется. У растений, обладающих микоризой, последняя также выполняет функцию дополнительной поглощающей поверхности, особенно в старых частях корня.

От поверхности корня через клетки первичной коры (экзодерму, мезодерму, эндодерму) и перицикл вода должна пройти до сосудов ксилемы. Такой тип транспорта воды и ионов называется радиальным. Через клетки коры возможны два пути передвижения воды и минеральных веществ: по цитоплазме и плазмодесмам (симпластный транспорт) и по клеточным

стенкам и межклетникам (апопластный транспорт) (рис. 3). Вода поступает в цитоплазму клеток ризодермы и паренхимных клеток корня осмотическим путем.

Поскольку сопротивление клеточных стенок для воды значительно ниже, чем цитоплазмы, более быстрый радиальный транспорт воды осуществляется через корень по апопласту. Однако на уровне эндодермы этот тип транспорта становится невозможным из-за непроницаемости для воды поясков Каспари. В эндодерме вода проникает через мембраны и цитоплазму пропускных клеток. Регуляция подачи воды на уровне

эндодермы осуществляется, с одной стороны, сменой быстрого апопластнотного транспорта на медленный симпластный, а с другой – тем, что диаметр стели, куда должна подаваться вода через эндодерму, в 5 – 6 раз меньше диаметра поверхности коры и всасывающей поверхности корня.

Читайте также:  Волосяная опухоль. пролиферирующая трихолеммальная киста. трихолеммокарцинома.

Следует отметить, что непроницаемость клеточных стенок эндодермы для воды не является абсолютной. Так, в растущих зонах корня, где пояски Каспари клеток эндодермы сформировались не полностью, смены типов транспорта, по-видимому, не происходит. Кроме того, в участках корня, где закладываются боковые корни, эндодерма прерывается.

Однако в целом массовый ток воды через эндодерму по апопласту резко ограничен.

Внутри проводящего цилиндра движение воды от эндодермы до сосудов ксилемы встречает небольшое сопротивление и, возможно, осуществляется по клеточным стенкам либо по симпласту клеток перицикла и околососудистой паренхимы.

Различают два основных типа корней всех систем:

мочковатые, состоящие из многочисленных нежных ответвлений, примерно одинаковых по размерам, и стержневые, имеющие мощный главный корень, растущий вертикально вниз; кроме того, выделяют смешанную корневую систему, свойственную многолетним травам.

Стержневая корневая система присуща преимущественно двудольным растениям, а мочковатая — однодольным, но бывают и исключения. У многих растений корни образуются, кроме того, на стеблях и листьях — они называются придаточными корнями. Придаточные корни (в частности, воздушные) не имеют корневого чехлика.

Боковые корни, развивающиеся на главном или придаточных, развиваются из клеток перицикла.

В корнях некоторых видов растений откладываются в запас питательные вещества, отчего корни сильно утолщаются, изменяется их внешний вид и строение, т.е. происходит видоизменение корня (метаморфоз). В корнеплодах утолщается главный корень — морковь, свекла, петрушка, брюква и др.

На второй год у этих растений развивается цветоносный побег за счет питательных веществ, запасенных в корне. Корнеклубни (или корневые шишки) образуются на придаточных или на боковых корнях (например, георгины, чистяк, ятрышник и др.

), воздушные корни характерны для некоторых тропических растений, в частности, орхидей. На нижних частях стеблей кукурузы образуются придаточные корни, придающие растению устойчивость и играющие роль подпорки для всего растения. Корни-присоски (гаустории) развиваются у растений паразитов — повилика, омелы и др.

Корневые отпрыски развиваются из придаточных почек корней у яблони, вишни, сливы, хрена, одуванчика и многих других растений.

У растений из семейства бобовых (фасоль, горох, клевер и др.) на корнях развиваются клубеньки, в которых расположены бактерии, способные усваивать азот из воздуха.

Корни многих других травянистых и древесных растений образуют с грибами симбиоз — микориза (грибокорень).

У мангровых, обитающих на береговых отмелях океанов в тропиках, развиваются ходульные корни, защищающие растения от затопления приливами.

Корни, как и другие органы растений, дышат: поглощают кислород, выделяют углекислый газ. Кислород легко диффундирует из воздуха между частичками почвы в окружающую их пленку воды и в корневые волоски.

Затем он также диффундирует в клетки коры и достигает центрального цилиндра. Углекислота также путем диффузии перемещается в обратном направлении и выходит наружу через корневые волоски.

У старых растений, не имеющих корневых волосков, газы поступают и выходят наружу через множество мелких отверстий — чечевички.

Механизмы передвижения воды по растению

  • Этот ток начинается на поглощающей воду поверхности корней, пронизывает все растение и заканчивается на испаряющих поверхностях наземных органов, главным образом листьев, причем испарение воды листьями должно быть компенсировано поглощением воды корнями. Таким образом, водообмен у растений складывается из трех этапов: 1) поглощения воды корнями, 2) передвижения ее по сосудам, 3) транспирации,
  • Хотя небольшие количества воды могут поглощаться и надземными частями растений, практически вся вода и минеральные соли поступают в организм высших растений через корневую систему из почвы.
  • Состояние воды в почве.

Почва — многофазное тело, состоящее из четырех главных компонентов: твердых минеральных частиц, органического вещества (гумуса), почвенного раствора и почвенного воздуха. Минеральные частйцы и гумус обазуют почвенную струстуру, а вода и воздух заполняют полости этой структуры.

Способность почвы удерживать воду зависит от ее состава и свойств. Относительно крупные кристаллы силикатов (песок) связывают воду в значительной степени.

Разнообразные глинистые минералы (алюмосиликаты) и гетерогенные гумусовые вещества, будучи коллоидами, могут удерживать значительные количества гидратационной воды. Такая вода условно называется связанной. Вода, содержащаяся в капиллярах почвы, может условно считаться свободной.

Определенное количество воды входит в состав минеральных компонентов почвы. Эта вода химически связана и практически недоступна для растений.

Существуют различные термины, применяемые для обозначения доступности почвенной влаги. При поступлении воды в сухую почву она вначале впитывается очень быстро. Затем скорость просачивания воды в нижние горизонты становится все медленнее.

Когда скорость нисходящего движения воды оказывается резко сниженной, влажность почвы достигает уровня, называемого полевой влагоемкостъю.

Если понятие «полевая влагоемкость» широко применяется для характеристики максимальных размеров запаса почвенной влаги, который может быть использован для роста растений, то влажность устойчивого завядания служит показателем минимальных размеров такого запаса.

Под влажностью устойчигово завядания понимают такую влажность почвы, при которой растения остаются увядшими до тех пор, пока в почву не подается вода. Влажность почвы, при которой наступает завядание различных растений, варьирует незначительно. Влажность устойчивого завядания представляет собой нижнюю границу того интервала влажности почвы, в котором возможен рост растений.

Поглощение воды корнем и ее радиальный транспорт.

Зона наиболее интенсивного поглощения воды совпадает с зоной рачвития корневых волосков. Основная функция корневых волосков заключается в увеличении всасывающей поверхности корня.

Выше зоны корневых волосков скорость всасывания воды снижается из-за опробковения клеток.

От поверхности корня через клетки коры, эндодерму и перицикл вода должна пройти до сосудов ксилемы. Через клетки коры возможны два пути транспорта воды и минеральных веществ: через цитоплазму по плазмодесмам (симпластный транспорт) и по клеточным стенкам (апопластный транспорт). Вода поступает в цитоплазму клеток ризодермы и паренхимных клеток корня по законам осмоса.

Поскольку сопротивление клеточных стенок для воды значительно ниже, чем у цитоплазмы, более быстрый радиальный транспорт воды осуществляется через корень по апопласту. Однако на уровне эндодермы этот тип транспорта становится невозможным из-за непроницаемых для воды поясков Каспари.

Следовательно, вода может преодолеть эндодерму только пройдя через мембраны и цитоплазму этих клеток.

Регуляция подачи воды на уровне эндодермы осуществляется, с одной стороны, сменой быстрого апопластного транспорта на медленный симпластный, а с другой — тем, что диаметр стели, куда должна подаваться вода через эндодерму, в 5—6 раз меньше диаметра поверхности коры и всасывающей поверхности корня.

Внутри проводящего цилиндра движение воды от эндодермы до сосудов ксилемы встречает небольшое сопротивление и, возможно, осуществляется по клеточным стенкам.

Механизмы корневого давления. (нижний концевой двигатель)

В сосуды ксилемы вода поупает благодаря осмотическому механизму. Осмотически активными веществами в сосудах и их клеточных стенках служат минеральныё вещество метаболиты. Накопление этих осмотически активных веществ в сосудах создает сосущую силу, способствующую осмотическому транспорту воды в ксилему.

Таким образом, в результате активной работы ионных насосов в корне и осмотическому (пассивному) поступлению воды в сосуды ксилемы в сосудах развивается гидростатическое давление, получившее названйе корневого давлешщ. Оно обеспечивает поднятие ксилемного раствора по сосудам ксилемы из корня в надземные части.

Механизм поднятия воды по растению вследствие развивающегося корневого давления называют нижним концевым двигателем.

Транспирация. Верхний концевой двигатель.

Транспирация — это физиологический процесс испарения воды растением. Основным органом транспирации является лист.

Из-за необходимости максимального контакта с воздушной средой растение имеет очень большую листовую поверхность. Вода испаряется с поверхности листьев и через устьица. В результате потери воды клетками листьев в них снижается водный потенциал, т. Е. Возрастает сосущая сила.

Это приводит к усилению поглощения клетками листа воды из ксилемы жилок и передвижению воды по ксилеме из корней в листья.

Таким образом, верхний концевой двигатель обеспечивающий передвижение водь вверх по растению, создается и поддерживается высокой сосущей силой транспирирующих клеток листовой паренхимы. Поэтому сила верхнего концевого двигателя будет тем больше, чем активнее транспирация.

Транспирация с поверхности листа через устьица идет почти с такой же скоростью, как и с поверхности чистой воды.

Это объясняется законом Стефана: через малые отверстия скорость диффузии газов пропорциональна не площади отверстия, а диаметру или длине окружности.

Поэтому, хотя площадь устьичных отверстий и мала по отношению к площади всего листа (0,5 — 2,0%), испарение воды через многочисленные устьица идет очень интенсивно.

  1. Кутикулярная транспирация.
  2. 42.
  3. Верхушечный рост.

Перемещение в пространстве корневых волосков, пыльцевых трубок, гиф грибов, протонемы мхов осуществляется за счет верхушечного роста. Это высокополяризованный тип роста, при котором в клетках соблюдается строгая пространственная локализация интенсивности синтеза стенки вдоль продольной оси клетки. Рост происходит путем активного локального секреторного процесса.

В кончиках растущих верхушечным ростом клеток содержится множество везикул различной электронной плотности, производных АГ и ЭР. Другие органоиды расположены на некотором расстоянии от кончика.

По данным циторадиоавтографии в кончике (верхушке) клетки обнаружен градиент секреторной и синтетической активности.

Для верхушечного роста характерно отсутствие в цитоплазме куполообразного кончика микротрубочек, которые появляются в цилиндрической части клетки. Для процесса секреции необходим кальций.

Например, для роста пыльцевых трубок традесканции концентрация Са2+в среде должна быть не ниже 0,1 ммоль/л, но не выше 1 ммоль/л.

Показано, что для верхушечного роста очень важен транспорт секреторных везикул к кончику клетки, которые доставляют материалы для синтеза стенки, а также синтазы и литические ферменты.

Литические ферменты разрыхляют структуру стенки, делая ее неспособной противостоять высокому тургорному давлению. Микрофибриллы стенки раздвигаются, и новые компоненты встраиваются при работе синтаз в растянутую тургорным давлением разрыхленную стенку.

В кончике растущей клетки микрофибриллы целлюлозы (или хитина у грибов) откладываются без строгой ориентации.

Поиск на сайте:

Ссылка на основную публикацию
Adblock
detector