Преобразование энергии раздражителя в рецепторах. рецепторный потенциал. абсолютный порог. длительность ощущения. адаптация рецепторов.

Преобразование энергии раздражителя в рецепторах. Рецепторный потенциал. Абсолютный порог. Длительность ощущения. Адаптация рецепторов.

НОВОСТИ    БИБЛИОТЕКА    КАРТА САЙТА    ССЫЛКИ    О САЙТЕ

Поступление в ЦНС сигналов от рецепторов обеспечивает организм всей информацией, необходимой для выживания.

Как правило, одна рецепторная клетка не может воспринимать все множество стимулов данного типа; организму, однако, нужна информация относительно силы (интенсивности) каждого стимула, чтобы правильно на него реагировать.

Рецепторы обладают двумя очень важными свойствами, которые повышают их эффективность и надежность. Эти свойства — чувствительность и способность к различению, и их обеспечивают особые структурные и функциональные приспособления, описанные ниже.

Параллельные сенсорные клетки с различными порогами возбуждения

Некоторые рецепторные органы, например рецепторы растяжения в мышцах, состоят из множества чувствительных клеток, имеющих разные пороги возбуждения. Клетки с низким порогом возбуждаются под действием слабых стимулов, а по мере возрастания силы раздражителя в отходящем от клетки нервном волокне частота импульсов увеличивается.

В определенной точке наступает насыщение, и дальнейшее усиление стимула уже не повышает частоту импульсов; однако при этом возбуждаются сенсорные клетки с более высоким порогом чувствительности, и теперь эти клетки тоже посылают импульсы, частота которых пропорциональна силе действующего стимула.

Таким образом диапазон эффективного восприятия расширяется (рис. 16.26).

Преобразование энергии раздражителя в рецепторах. Рецепторный потенциал. Абсолютный порог. Длительность ощущения. Адаптация рецепторов.Рис. 16.26. Частота потенциалов действия, возникающих в нейронах, отходящих от трех сенсорных клеток А, Б и В с разными порогами возбуждения. У клеток Б и В точка активации совпадает с точкой насыщения для сенсорной клетки с более низким порогом

Адаптация

При длительном воздействии сильного раздражителя большинство рецепторов вначале возбуждает в сенсорном нейроне импульсы с большой частотой, но постепенно частота их снижается, и это ослабление ответа во времени называют адаптацией.

Например, войдя в комнату, вы можете сразу обратить внимание на тиканье часов, но затем перестанете его замечать. Скорость наступления и степень адаптации рецепторной клетки зависят от ее функции.

В этом отношении существуют два типа рецепторов — медленно и быстро адаптирующиеся.

Быстро адаптирующиеся (фазные) рецепторы в момент «включения» или «выключения» стимула отвечают на изменения его интенсивности высокочастотным разрядом импульсов. Именно так действуют, например, тельца Пачини, реагирующие на прикосновение, и другие рецепторы, отвечающие на внезапные изменения стимула: эти рецепторы доставляют сведения о его динамике.

Медленно адаптирующиеся (тонические) рецепторы отвечают на постоянный стимул постепенно уменьшающейся частотой импульсов. Например, рецепторы растяжения речного рака регистрируют статические аспекты стимулов, связанных с более или менее стабильными условиями.

Полагают, что адаптация связана с уменьшением проницаемости мембраны рецептора для ионов вследствие непрерывной стимуляции. В результате амплитуда и продолжительность рецепторного потенциала постепенно убывают, и когда его величина становится ниже пороговой, импульсация в чувствительном нейроне прекращается.

Значение адаптации сенсорных клеток состоит в том, что она позволяет животному получать точную информацию об изменениях в окружающей среде.

Когда этих изменений нет, клетки находятся в покое, что предотвращает перегрузку центральной нервной системы ненужной информацией.

Благодаря этому повышается общая эффективность и экономность работы центральных механизмов — они могут игнорировать статическую фоновую информацию и сосредоточиться на восприятии внешних событий, имеющих жизненно важное значение.

Конвергенция и суммоция

Во многих сенсорных органах высокая чувствительность достигается благодаря особому анатомическому расположению рецепторов и нейронов — так называемой конвергенции. В таких случаях выходные пути от нескольких рецепторных клеток сходятся (или, как говорят, конвергируют) к одному сенсорному нейрону.

Как правило, эти клетки невелики по размерам, присутствуют в большом числе и чрезвычайно чувствительны к стимуляции. В то время как воздействие стимула на одну из этих клеток не могло бы вызвать ответ в сенсорном нейроне, одновременная стимуляция нескольких клеток дает достаточный суммарный эффект.

Их совместное воздействие на сенсорный нейрон называется суммацией и сходно в функциональном отношении с суммацией в синапсах (разд. 16.1.2) и в эффекторах (разд. 16.6 и 17.4.5). Яркий пример конвергенции и суммации — функция палочек в сетчатке млекопитающего.

Некоторые из этих клеток способны реагировать даже на один квант света, но создающийся в них рецепторный потенциал недостаточен для возбуждения распространяющегося потенциала действия в волокне зрительного нерва.

Однако несколько палочек (от 2-3 до нескольких сотен) связаны через биполярные нейроны с одним волокном зрительного нерва. Чтобы вызвать в нем импульс, требуется стимуляция по меньшей мере шести палочек.

Повышенная чувствительность к свету, обусловленная таким совместным действием палочек, служит прекрасным приспособлением для сумеречного зрения, хорошо развитого у животных, ведущих ночной образ жизни, например у сов, барсуков и лисиц.

Однако эта высокая чувствительность связана с уменьшением остроты зрения, в чем мы можем легко убедиться, если попробуем читать при слабом освещении. В глазу человека и животных, ведущих дневной образ жизни, этот дефект палочкового зрения преодолевается благодаря присутствию колбочек, которым (за немногими исклю-чениями) не свойственна конвергенция, приводящая к суммации. Жертвуя чувствительностью, система колбочек обеспечивает большую остроту зрения (разд. 16.5.4).

Спонтанная активность

В некоторых органах чувств нервные импульсы возникают в сенсорных нейронах и в отсутствие стимула. Эта система не так бессмысленна, как может показаться: она дает два важных преимущества.

Во-первых, она повышает чувствительность рецептора, обеспечивая немедленный ответ на стимуляцию, которая в противном случае была бы слишком мала, чтобы вызвать реакцию сенсорного нейрона; любое, даже очень малое, изменение интенсивности стимула будет вызывать изменение частоты импульсов в этом нейроне.

Во-вторых, эта система позволяет регистрировать направление изменения стимула в виде увеличения или уменьшения частоты разрядов сенсорного нейрона.

Например, в рецепторах инфракрасного света, расположенных в ямках на голове гремучей змеи и действующих как локаторы при обнаружении жертвы или врага, существует спонтанная активность, благодаря которой они способны улавливать повышение или понижение температуры всего на 0,1°С.

Обратная связь в регуляции рецепторов

В некоторых органах чувств порог чувствительности может понижаться или повышаться под действием эфферентных импульсов, поступающих из центральной нервной системы, благодаря чему рецептор может проявлять одинаковую чувствительность к стимулам разной интенсивности.

Во многих случаях эта регуляция осуществляется по принципу обратной связи с рецептором и вызывает изменения во вспомогательных структурах, благодаря чему рецепторная клетка функционирует в ином диапазоне величин стимула.

Такие изменения происходят, например, в мышечном веретене и в радужной оболочке глаза.

Латеральное торможение

Важную роль в повышении чувствительности рецептора и его разрешающей способности играет латеральное торможение. Оно состоит в том, что соседние сенсорные клетки, возбуждаясь, оказывают друг на друга тормозящее воздействие.

Исследования, проведенные на отдельных глазках (омматидиях) фасеточного глаза мечехвоста (Limulus) показали, что смежные омматидии, если они подвергаются стимуляции одновременно, дают более слабый ответ, чем в том случае, если они стимулируются по отдельности.

Латеральное торможение усиливает контраст между двумя соседними участками, различающимися по интенсивности стимула. На рис. 16.

27 представлена модель зрительного восприятия, показывающая, каким образом разница в освещении двух соседних рецепторов «преувеличивается» и край светлого участка кажется более светлым, чем он есть на самом деле. Этот эффект лежит в основе зрительной иллюзии, показанной на рис. 16.28.

Преобразование энергии раздражителя в рецепторах. Рецепторный потенциал. Абсолютный порог. Длительность ощущения. Адаптация рецепторов.Рис. 16.27. Схема возникновения потенциалов действия в четырех соседних омматидиях 7, 2, 3 и 4. Омматидии 2 и 3 непосредственно стимулируются узким лучом света, а 7 и 4 — слабо стимулируются рассеянным светом от луча: падающего на 2 и 3. Если латерального торможения нет (А), омматидии 7 и 4 возбуждаются и в их сенсорных нейронах возникают потенциалы действия. При наличии латерального торможения прямой свет стимулирует не только 2 и 3, но и тормозные нейроны, соединяющие их с 7 и 4 соответственно; в результате потенциалы действия в последних не возникают. Этот механизм усиливает контраст, воспринимаемый церебральными ганглиями при разном освещении соседних фоторецепторов. Этот же принцип применим к колбочкам и палочкам глаза млекопитающих. (По Lamb, Ingram, Johnson, Pitman, 1980.) Преобразование энергии раздражителя в рецепторах. Рецепторный потенциал. Абсолютный порог. Длительность ощущения. Адаптация рецепторов.Рис. 16.28. Пример зрительной иллюзии, связанной с латеральным торможением. Кажущиеся серые пятна на пересечении белых полос возникают, по-видимому, в связи с тем, что рецепторы, воспринимающие белые полосы, затормаживают соседние рецепторы, препятствуя их стимуляции. Отсутствие стимуляции со стороны темных участков и стимуляция со стороны белых совместно создают ощущение серых пятен на пересечении белых полос

В глазу человека латеральное торможение увеличивает разрешающую способность, или остроту зрения. Разрешающая способность системы — это способность воспринимать два или более стимулов одинаковой интенсивности как раздельные.

Ее можно измерять наименьшим угловым расстоянием, при котором две темные линии одинаковой плотности еще могут восприниматься не как одна, а как две раздельные линии.

Острота зрения человеческого глаза очень велика, и это связано отчасти с латеральным торможением, но в основном — с расположением колбочек в сетчатке.

Свет, падающий из двух источников на одну и ту же колбочку или на две соседние колбочки, не воспринимается как поступающий из двух точек; но если он падает на колбочки, разделенные всего лишь одной колбочкой, он может уже восприниматься как идущий из разных точек. Глаз человека содержит около 7 млн. колбочек.

Читайте также:  Клиника острых отравлений. Неотложная помощь при острых отравлениях.

В центральной ямке сетчатки — участке диаметром 1 мм-95% фоторецепторов составляют колбочки, плотность которых здесь достигает 150 тыс. на 1 мм2. Каждая из колбочек связана с биполярной клеткой, соединяющей колбочку с ее «собственным» сенсорным нейроном зрительного нерва. Именно отсутствие конвергенции и тесное расположение колбочек в центральной ямке обеспечивают большую остроту зрения.

Вы при желании постоянно можете отыскать себе симпатичную индивидуалку на интим сайте http://tver.prostitutki.desi, если у вас нет постоянной партнерши или ваша возлюбленная не удовлетворяет вас должным образом.

Классификация рецепторов органов чувств и анализаторов

По способности воспринимать раздражения внешнего мира, действующие на организм на различных расстояниях, внешние рецепторы делятся на: 1) дистантные, воспринимающие раздражения от предметов, находящихся на далеком расстоянии, — глаз, ухо, органы обоняния, и 2) контактные, воспринимающие раздражения, непосредственно к ним приложенные, — органы осязания, вкуса, проприоцепторы. Рецепторы, воспринимающие тепло и холод, могут быть включены и в ту и в другую группу. Рецепторы внутренних органов входят в группу контактных рецепторов.

У высших животных и человека наряду с многочисленными нервными окончаниями и специализированными воспринимающими органами, расположенными в коже, слизистых оболочках и внутренних органах (рецепторами), есть и развитые, имеющие сложное строение рецепторы, обычно называемые органами чувств, — глаз, ухо, органы вкуса, обоняния, вестибулярные аппараты, мышечные веретена (проприоцепторы).

Адекватные и неадекватные раздражители

Органы чувств, по определению Ф. Энгельса, являются орудиями головного мозга. Внешний мир отображается головным мозгом при посредстве экетеро- и проприопепторов. Следовательно, раздражение этих рецепторов — начальное звено познания объективной реальности внешнего мира.

Раздражение каждого рецептора вызывает ощущение определенного характера или рода: так, например, раздражение глаза вызывает зрительные ощущения, раздражение вкусовых рецепторов — вкусовые и т. д. Каждый род включает несколько видов качественно различных ощущений.

Так, например, при раздражении глаза мы получаем светоощущения и цветоощущения — красного, оранжевого, желтого, зеленого и т. д.; при раздражении вкусовых рецепторов — ощущения сладкого, кислого, горького, соленого.

Ощущения вызываются действием внешнего мира, существующего вне нас и независимо от нас, причем каждый рецептор раздражается качественно определенной формой движения материи. Поэтому для каждого рецептора есть свой качественно специфический, раздражитель, для которого существует особенно низкий порог раздражимости.

Для глаза соответствующий раздражитель — световые волны, для уха — звуковые волны, для вкусовых рецепторов — определенные химические вещества и т. д.

Специфические для данного рецептора раздражители, к которым рецептор приспособлен в результате фило- и онтогенеза, называются адекватными. Кроме адекватных, существуют неадекватные, инадекватные раздражители, к которым рецептор не приспособлен.

Они действуют необычным образом и вызываю т при раздражении рецептора только некоторую незначительную часть ощущений, получаемых при его специфическом раздражении. К ним относятся механическое раздражение, действие электрического тока, химическое раздражение и др.

Так, например, механическое раздражение сетчатки или зрительного нерва вызывает ощущение света — «фосфен», раздражение электрическим током внутреннего уха — ощущение шума и движения, механическое или электрическое раздражение барабанной струны — вкусовое ощущение и т.

д.

Между адекватными и неадекватными раздражителями по качествам вызываемых ими ощущений не может быть поставлен знак равенства. Кроме того, возбудимость по отношению к качественно специфическому, адекватному раздражителю во много раз выше, чем к инадекватному.

Условнорефлекторные и электрофизиологические исследования органов чувств

Ощущения, как указывал И. П. Павлов, являются наипростейшими субъективными сигналами объективных отношений организма к внешнему миру. Поэтому, изучая анализаторы у животных методом условных рефлексов, И. П. Павлов поставил перед собой задачу физиологически обосновать психологические понятия.

Особенно ценно сочетание этого метода с электрофизиологическим исследованием потенциалов в органах чувств, афферентных путях в большие полушария (в нервах, подкорковых центрах) и в мозговых концах анализаторов.

В настоящее время исследуются микро электро физиологическим методом одиночные рецепторные клетки, изолированные чувствительные волокна и одиночные клетки анализаторов подкорковых узлов и коры мозга.

В сравнительно простых рецепторах, в которых трансформация внешнего воздействия в нервный импульс происходит в самом чувствительном нейроне, деполяризуется мембрана нейрона, что приводит к возникновению афферентных импульсов, например в тактильных рецепторах кожи.

В сложных рецепторах, например зрения, слуха, при внешнем воздействии сначала деполяризуются специальные рецепторные клетки, в которых образуется медиатор, действующий на синапсы чувствительных нейронов.

При этом синапсы деполяризуются и в них появляются постсинаптические потенциалы, возбуждающие нервные волокна, по которым передаются афферентные импульсы. Следовательно, в сложных рецепторах деполяризация происходит два раза.

Сначала деполяризуется рецепторная клетка, в которой потенциал градуально возрастает до критического уровня (рецепторный потенциал). Затем в результате деполяризации синапса чувствительного нейрона в нем образуется, генерируется потенциал, распространяющийся по нервному волокну (генераторный потенциал).

При раздражении рецепторов в них возникает не только возбуждение, но и торможение. При возбуждении появляется местная деполяризация, а при торможении гиперполяризация, которая может возникать после деполяризации и вторично. В некоторых рецепторах, например зрения, слуха, существует спонтанная, фоновая импульсация, к которой добавляется импульсация при раздражении.

Физиологические основы интенсивности и качества ощущения

Функции анализаторов могут изучаться в плане физиологии и в плане психологии. При этом следует учитывать единство физиологического и психологического процессов.

При раздражении в рецепторах образуются химические вещества, деполяризирующие мембраны рецепторных клеток, что приводит к возникновению местных, генераторных биопотенциалов, которые пропорциональны логарифму силы раздражителя. Эти потенциалы градуальны и поэтому не подчиняются правилу «все или ничего».

Они вызывают в афферентных нервных волокнах импульсы возбуждения (проводниковые биопотенциалы), которые передаются в центральную нервную систему.

Различия в частоте этих проводниковых биопотенциалов, их группировке в залпы и в числе афферентных нервных волокон, по которым они проводятся, позволяют широко варьировать информацию из рецепторов.

Физиология анализаторов изучает физиологические процессы, происходящие в рецепторах, в афферентных нервных путях и в воспринимающих областях головного мозга в связи с их строением.

При раздражениях анализаторов установлены определенные изменения их функционального состояния на основе изучения двигательных и вегетативных рефлексов, потенциалов, биохимических процессов и т. д.

в зависимости от качества раздражителя, его силы, времени его действия, пространства, на котором он действует, условий раздражения и т. д. Эти физиологические закономерности деятельности анализаторов лежат в основе психических процессов.

При изучении анализаторов человека устанавливаются определенные соотношения между величиной силы раздражителя и интенсивностью возникающих ощущений, пороги раздражения по интенсивности ощущений и т. д. Установлено, что раздражение рецепторов человека при интенсивностях раздражений, не дающих ощущений, т. е.

ниже порога ощущения, вызывает нервный процесс. Оказалось, что положительные условные рефлексы и дифференцировки истерическими анестезиями при прикосновении к коже на стороне, лишенной ощущений. Таким образом, нервный процесс в больших полушариях предшествует ощущениям, определяет их и может протекать без ощущений.

Психологическое изучение анализаторов выходит за пределы физиологии и прежде всего учитывает интеллект ощущающего человека, его отношение к предмету, его реальные взаимоотношения с окружающим миром.

Один и тот же физический раздражитель одной и той же интенсивности может оказаться и выше и ниже порога ощущения в зависимости от лабильности мозга, от состояния организма и от того, является ли он показателем условий жизни и деятельности данного человека, так как значение раздражителя изменяется при изменении условий жизни.

Общие свойства рецепторов: раздражимость (возбудимость), лабильность и адаптация.

Раздражимость и лабильность рецепторов

Раздражимость и лабильность рецепторов, нервных путей, проводящих афферентные нервные импульсы, и анализаторов больших полушарий могут быть определены порогом раздражения, хронаксией, адекватой, частотой, группировкой и амплитудой афферентных импульсов.

Качество ощущения обусловлено прежде всего качеством раздражителя, т. е. особенностями специфической формы движения материи, действующей на орган чувств. Оно зависит от адекватности раздражителя и от его интенсивности.

Переход энергии внешнего раздражения в качество ощущения, в сознание обусловлен строением и функцией органа чувств, афферентного пути и мозгового конца анализатора, качественной и количественной характеристикой афферентной импульсации в анализаторы больших полушарий и главным образом характером протекающего в них нервного процесса.

Раздражимость и лабильность рецепторов изменяются с возрастом и в зависимости от функционального состояния как самого рецептора, так и особенно высшего отдела нервной системы и организма в целом.

Они рефлекторно регулируются симпатической нервной системой.

Колебания раздражимости и лабильности зависят также от местных физических и химических условий (температуры, концентрации ионов и их соотношения и т. п.).

Пороги раздражения (хронаксия и адеквата)

Для каждого рецептора существует порог раздражения — наименьшая сила раздражителя, вызывающая возбуждение. Возбуждение достигает критического уровня, при котором возникает ощущение (порог ощущения). Весьма слабое раздражение не дает ощущений. Раздражение должно быть не ниже некоторого критического предела, а именно — абсолютного порога раздражения.

При дальнейшем увеличении интенсивности раздражения рецептора усиливается возникающее в последнем возбуждение. Это воспринимается как усиление ощущения; при этом изменяются потенциалы, т. е. увеличивается частота, изменяются группировка и амплитуда волн возбуждения, проходящих по афферентным нервным волокнам к центральной нервной системе.

Читайте также:  Бактерионосительство. Способность к длительному выживанию в организме. Инфекционный процесс. Инфекция. Инфекционная болезнь.

При сопоставлении хронаксии различных рецепторов оказывается, что наименьшую среднюю величину хронаксии имеют рецепторы, дающие ощущение зубной боли, затем рецепторы слуха, кожных ощущений, зрения, вкуса.

При определении хронаксии учитывается только минимальное время действия раздражителя, но не учитывается значение пространства, на котором действует раздражитель, неразрывно связанное с временем его действия.

Кроме того, минимум энергии раздражения при определении хронаксии не всегда равен 2 реобазам. а часто 2,5-3 реобазам.

Существенное значение имеет качество раздражителя и его адекватность: при одном и том же функциональном состоянии более адекватные раздражения обнаруживают повышенную возбудимость органа чувств, а относительно менее адекватные — пониженную возбудимость.

Поэтому зона наибольшего избирательного ответа органа чувств на качественно определенное раздражение измеряется минимумом энергии в одну реобазу — адекватой. Для определения адекваты применяются раздражители, дозированные по силе, длительности и, если возможно, пространству (П. О. Макаров).

Соотношение между силой раздражения и интенсивностью ощущения

Между силой раздражения и интенсивностью ощущения может быть обнаружено закономерное количественное соотношение, выражающееся в пороге различения (разностном). Под порогом различения понимают наименьшую разницу двух величин силы раздражения, которая сопровождается едва заметной разницей интенсивности ощущения.

Впервые соотношение между усилением раздражения и увеличением интенсивности ощущения было установлено Пьером Буже (1760), который показал, что минимально ощутимая разница яркостей двух источников света улавливается, когда яркость одного из них превышает яркость другого на 1/64. Затем это отношение было изучено Е. Вебером при исследовании ощущения давления (1831). На одну и ту же поверхность кожи накладывались различные грузы с интервалом 15-30 с; при этом испытуемый должен был указывать, когда им воспринималась разница в давлении. Оказалось, что для получения едва заметного увеличения ощущения нужно добавить около 3,2-5,3% первоначального груза. Вебер сформулировал «закон», согласно которому относительные пороги различения остаются постоянной величиной, независимо от силы раздражения.

Если Р — раздражение, АР — прирост раздражения, К — постоянная величина, зависящая от рецепторов, то K= ∆P/P.

Эта постоянная величина К для ощущения давления составляет, как уже упоминалось, около 1/19 — 1/30 исходной массы, для ощущения звука в зоне частот 500-3000 Гц — 3/1000, для ощущения света — 1/100.

Однако «закон» Вебера верен только в узких пределах силы раздражения — для раздражения средней силы рецепторов давления, зрения и слуха. Для очень слабых и очень сильных раздражений «закон» Вебера недействителен. Едва заметные физические различия раздражителей субъективно не равны.

Зависимость нарастания интенсивности ощущения от усиления раздражения математически выражена Фехнером в «основной психофизической формуле» (нарастанию ощущения в арифметической прогрессии соответствует усиление раздражения в геометрической прогрессии).

Эта формула не действительна для болевой рецепции, рецепторов вкуса и обоняния. Благодаря исследованию П. П. Лазарева формула Вебера — Фехнера заменена более сложной, глубже выражающей отношение силы раздражителя к интенсивности ощущения.

Однако и она не охватывает отношений раздражения и ощущения.

Адаптация рецепторов и анализаторов (сенсорных систем)

Рецепторы обладают свойством адаптации (приспособления). Возбуждение рецептора наиболее интенсивно в первые моменты его раздражения, затем оно резко снижается и при этом не обнаруживается утомления.

Адаптация отличается от утомления тем, что она развивается значительно быстрее, а восстановление от нее после прекращения раздражения происходит почти мгновенно. Таким образом, ощущение интенсивно только в начале своего возникновения, а затем становится менее интенсивным.

Адаптация зависит не только от продолжительности раздражения, но и от силы раздражителя: чем сильнее раздражитель, тем быстрее наступает адаптация.

Так, например, ощущения боли и давления притупляются при длительном действии постоянного внешнего раздражителя, интенсивность зрительных и слуховых восприятий падает (свет воспринимается как менее яркий, звук — как менее сильный и т. д.).

Это падение интенсивности ощущения в наибольшей степени выражено для рецепторов зрения, слуха, обоняния и вкуса и некоторой части рецепторов прикосновения (есть рецепторы прикосновения с медленной адаптацией), а в наименьшей мере — для проприоцепторов, еще меньше — для рецепторов кровеносных сосудов и легких.

Быстрая адаптация рецепторов осязания позволяет человеку не ощущать одежду, а очень медленная адаптация проприоцепторов, а также рецепторов кровеносных сосудов и легких обусловливает постоянную рефлекторную саморегуляцию положения тела в пространстве, кровяного давления и дыхания. Адаптация обусловливается главным образом физиологическими процессами в мозговых областях анализаторов, а также процессами, совершающимися в самих рецепторах. В основе адаптации лежат колебания лабильности рецепторов и нейронов головного мозга.

Предполагается, что адаптация обусловлена распадом медиатора, происходящего сравнительно быстро в рецепторах и значительно медленнее в мозговых центрах.

При устойчивой частоте импульсов постепенно создается устойчивый уровень концентрации медиатора, пропорциональный этой частоте.

Адаптация не всегда приводит к уменьшению информации из рецепторов и органов чувств, часто информация возрастает, например порог различения при адаптации уменьшается.

В сложных органах чувств, например зрения, адаптация состоит также в двигательных реакциях, обеспечивающих приспособление к меняющимся условиям действия раздражителя (поворотах глаз, изменениях диаметра зрачка, аккомодации и др.). Адаптация рефлекторно саморегулируется нервной системой.

Рецепторный отдел сенсорных систем. Зависимость между силой раздражения и интенсивностью ощущения в рецепторах. ( Закон Вебера и Вебера –Фехнера)

В сенсорной физиологии принято говорить о «рецепторных клетках», или, что то же самое, о «сенсорных рецепторах». Что же касается понятия «сенсорные системы», то оно включает в себя не только периферически расположенные биосенсоры, но и всю систему обработки передаваемых ими сигналов, т.е. мозг.

Например, таким образом оптические биосенсоры, или фоторецепторы, превращают оптическое изображение в нейроизображение.

Естественно, что в зависимости от физической природы воспринимаемых стимулов, или, как говорят, от их модальности, существуют фоторецепторы (зрительная система), хеморецепторы (обонятельная и вкусовая системы), механорецепторы (фонорецепторы в слуховой системе, рецепторы органов равновесия, рецепторы наружных покровов тела), терморецепторы (в соматосенсорной системе), гигро- и электрорецепторы. Соответственно, рецепторами работают сенсорные системы: со светом — зрительная, с механическими колебаниями в среде — слуховая и акустико-латеральная (органы боковой линии у некоторых водных животных), с идентификацией пищевых веществ — вкусовая, с пахучими сигналами — обонятельная; положение организма в пространстве и ориентацию тела в нем определяет система органов равновесия; механические, температурные и ряд иных характеристик внешней среды оценивает соматосенсорная система (осязание), а электрическую «погоду» в водоем ах — электросенсорная. Как уже говорилось, этими системами в той или иной комбинации снабжены все организмы, но не все системы представлены у человека, да и сам перечень сенсорных рецепторов и систем, возможно, пока не полон. В результате действия адекватного раздражителя у большинства рецепторов увеличивается проницаемость клеточной мембраны для катионов, что приводит к ее деполяризации. Исключением из общего правила являются фоторецепторы, где после поглощения энергии квантов света в связи особенностями управления ионными каналами происходит гиперполяризация мембраны. Изменение величины мембранного потенциала рецепторов в ответ на действие стимула представляет собой рецепторный потенциал — входной сигнал первичных сенсорных нейронов. Если величина рецепторного потенциала достигнет критического уровня деполяризации или превысит его, генерируются потенциалы действия, с помощью которых сенсорные нейроны передают в центральную нервную систему информацию о действующих стимулах. Генерация потенциалов действия происходит в ближайшем к рецепторам перехвате Ранвье миелинизированных волокон или ближайшей к рецепторам части мембраны безмиелинового волокна. Минимальная сила адекватного стимула, достаточная для генерации потенциалов действия в первичном сенсорном нейроне, определяется как его абсолютный порог. Минимальный прирост силы стимула, сопровождающийся значимым изменением реакции сенсорного нейрона, представляет собой дифференциальный порог его чувствительности. Информация о силе действующего на рецепторы стимула кодируется двумя способами: частотой потенциалов действия, возникающих в сенсорном нейроне (частотное кодирование), и числом сенсорных нейронов, возбудившихся в ответ на действие стимула. При увеличении силы действующего на рецепторы раздражителя повышается амплитуда рецепторного потенциала, что, как правило, сопровождается увеличением частоты потенциалов действия в сенсорном нейроне первого порядка. Чем больше первичных сенсорных нейронов возбудится одновременно, тем сильнее будет их совместное действие на общий нейрон второго порядка, что в итоге отразится на субъективной оценке интенсивности действующего раздражителя.

Суть закона Вебера заключается в том, что минимальное изменение интенсивности звука которое различает человеческое ухо, не зависит от интенсивности слышимого звука и составляет приблизительно 10% от ее величины: дельтаI/I=10-1.

Помимо слуховых ощущений, Вебер изучал также осязание и зрение и установил, что для осязания минимальное различие в ощущении тяжести груза не зависит от величины этого груза и составляет ~ 1/30, а для зрения минимальная воспринимаемая разница в интенсивности света также не зависит от величины интенсивности и составляет ~ 1/100.

Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущения пропорциональна логарифму интенсивности стимула. В ряде экспериментов, начиная с 1834 года, Э.

Вебер показал, что новый раздражитель, чтобы отличаться по ощущениям от предыдущего, должен отличаться от исходного на величину, пропорциональную исходному раздражителю.

Читайте также:  Синдром Гийена — Барре. Воспалительные полирадикулоневропатии.

Так, чтобы два предмета воспринимались как различные по весу, их вес должен различаться на 1/30, для различения яркости двух источников света необходимо, чтобы их яркость отличалась на 1/100 и т. д. На основе этих наблюдений Г.

Фехнер в 1860 году сформулировал «основной психофизический закон», по которому сила ощущения p пропорциональна логарифму интенсивности раздражителя S: р=кlog(S/S0), где S0 — граничное значение интенсивности раздражителя: если S < S0, раздражитель совсем не ощущается.

Так, люстра, в которой 8 лампочек, кажется нам настолько же ярче люстры из 4-х лампочек, насколько люстра из 4-х лампочек ярче люстры из 2-х лампочек. То есть, количество лампочек должно увеличиваться в разы, чтобы нам казалось, что прирост яркости постоянен. И наоборот, если прирост яркости постоянен, нам будет казаться, что он уменьшается. Закон Вебера — Фехнера можно объяснить тем, что константы скорости химических реакций проходящих при рецептировании нелинейно зависят от концентрации химических посредников физических раздражителей или собственно химических раздражителей.

Строение и работа синапсов.

Взаимодействие нейронов между собой (и с эффекторными органами) происходит через специальные образования — синапсы (греч. — контакт). Они образуются концевыми разветвлениями нейрона на теле или отростках другого нейрона.

Чем больше синапсов в нервной клетке, тем больше она воспринимает различных раздражений и, следовательно, шире сфера влияний на ее деятельность и возможность участия в разнообразных реакциях организма. Особенно много синапсов в высших отделах нервной системы и именно у нейронов с наиболее сложными функциями.

В структуре синапса различают три элемента: 1)пресинаптическую мембрану, образованную утолщением мембраны конечной веточки аксона; 2)синаптическую щель между (или щелевые контакты в электр синапсах); 3)постсинаптическую мембрану — утолщение прилегающей поверхности следующего нейрона.

В большинстве случаев передача влияния одного нейрона на другой осуществляется химическим путем. В пресинаптической части контакта имеются синоптические пузырьки, которые содержат специальные вещества — медиаторы или посредники. Ими могут быть ацетилхолин, норадреналин, некоторые аминокислоты и др.

Приходящие в окончания аксона нервные импульсы вызывают опорожнение синаптических пузырьков и выведение медиатора в синаптическую щель. По характеру воздействия на последующую нервную клетку различают возбуждающие и тормозящие синапсы.

В возбуждающих синапсах медиаторы (например ацетилхолин) связываются со специфическими макромолекулами постсинаптической мембраны и вызывают ее деполяризацию. При этом регистрируется небольшое и кратковременное (около 1 мс) колебание мембранного потенциала в сторону деполяризации или возбуждающий постсинаптический потенциал (ВПСП).

Для возбуждения нейрона необходимо, чтобы ВПСП достиг порогового уровня (не менее 10 мВ). Действие медиатора очень кратковременно (1-2 мс). В тормозящих синапсах содержатся тормозные медиаторы (например, гамма-аминомасляная кислота). Их действие на постсинаптическую мембрану вызывает усиление выхода ионов калия из клетки и увеличение поляризации мембраны.

При этом регистрируется кратковременное колебание мембранного потенциала в сторону — тормозящий постсинаптический потенциал (ТПСП). В результате нервная клетка оказывается заторможенной. Возбудить ее труднее, чем в исходном состоянии. Для этого понадобится более сильное раздражение, чтобы достичь КУД.

Общее изменение мембранного потенциала нейрона является результатом сложного взаимодействия (интеграции) местных ВПСП и ТПСП всех многочисленных активированных синапсов. При одновременном влиянии как возбуждающих, так и тормозящих синапсов происходит алгебраическое суммирование (т.е. взаимное вычитание) их эффектов.

При этом возбуждение нейрона возникнет лишь в том случае, если сумма возбуждающих постсинаптических потенциалов окажется больше суммы тормозящих. Это превышение должно составлять определенную пороговую величину (около 10 мВ). Только в этом случае появляется потенциал действия клетки. Возбудимость нейрона зависит от его размеров: чем меньше клетка, тем выше ее возбудимость. появлением потенциала действия начинается процесс проведения нервного импульса по аксону и передача его на следующий нейрон или рабочий орган, т.е. осуществляется эффекторная функция нейрона.

Передача сигнала в синапсе

Приход нервного импульса по аксону вызывает деполяризацию пресинаптической мембраны и изменение ионных токов пре-СМ. Происходит активация потенциалзависимых Са2+-каналов, через которые в терминаль поступает Са2+, взаимодействует с белками, инициирует экзоцитоз и освобождение в синаптическую щель медиатора. Синаптическая везикула подходит к терминали.

сливается с ней и выделяет свое содержимое в синаптическую щель. Этот процесс энерго(АТФ)зависим. Са2+ участвует в осуществлении метаболических процессов, завершающихся выделением нейромедиатора и нейромодулятора, и в самом выделении нейромедиатора и нейромодулятора.

При действии нейромедиатора на ауторецепторы пресинаптической терминали активируется обратная связь, регулирующая синтез и выделение нейромедиатора. Часть его поступает обратно в терминаль (обратное поступление медиатора). Это поступление совершается с помощью переносчика и, возможно, других медиаторов, а также путем эндоцитоза.

Поступивший обратно медиатор пополняет его содержание в терминали. Энергия, необходимая для деятельности терминали, обеспечивается митохондриями. Деятельность терминали и, в частности, выделение нейромедиатора, контро-лируется влияниями другого специального нейрона, которые осуществляются через его терминаль (пресинаптический контроль).

Выделившиеся нейромедиатор и нейромодулятор связываются со своими рецепторами на мембране постсинаптического нейрона.

Активация этих рецепторов ведет к открытию ионных каналов и как результат — к возникновению или усилению ионных токов через каналы, что обусловливает возбуждение (или торможение) и включение в реакцию цепи внутриклеточных метаболических процессов в постсинаптическом нейроне. Активированные рецепторы нейромодуляторов изменяют реактивность рецепторов к нейромедиаторам путем рецептор-рецепторного взаимодействия и через внутриклеточные процессы. Нейромодулятор изменяет также реакцию постсинаптического нейрона на нейромедиатор.

Медиатор освобождается приблизительно одинаковыми порциями, соответствующими объему одного пузырька (везикулы), получившими название «квантов» медиатора. При этом ампли-туда возбуждающего постсинаптического тока (ВИСТ) всегда кратна количеству выделенных квантов.

В отсутствие стимуляции нейрона «кванты» медиатора выделяются спонтанно из открывающихся наружу синаптических пузырьков.

От прихода нервного импульса до развития постсинаптического ответа в химическом синапсе проходит определенное время, получившее название синаптической задержки, которое со-ставляет 0.2—0.5 мс. Основная часть этого времени тратится на процесс секреции медиатора и определяется главным образом временем, необходимым для вхождения кальция внутрь пресинаптического окончания.

Пространственная суммация. Возбуждающий постсинаптический ток (ВПСТ) в течение короткого времени входит в нейрон, вызывая местный сдвиг потенциала (ВПСП) постсинаптической мембраны. Часть его выходит из клетки на некотором расстоянии от синапса, например в аксонном холмике.

При этом величина одиночного ВПСП электротонически снижается при удалении от синапса. Однако, если нейрон имеет два или более синапсов, которые активированы одновременно, то токи, генерируемые в этих синапсах, суммируясь, вместе дают более высокий ВПСП.

Поскольку в этом случае происходит суммация результатов одновременной активации пространственно разделенных синапсов, говорят о пространственной суммации возбуждения.

Еще совсем недавно казался незыблемым принцип Дейла, который гласил: «Один нейрон — один медиатор», т. е. каждый нейрон выделяет один и тот же медиатор из всех своих, порой далеко удаленных, окончаний.

Однако в дальнейшем оказалось, что один нейрон способен использовать несколько медиаторов (например ацетилхолин + АТФ). Но сочетание медиаторов или медиатора и модулятора, видимо, всегда одинаково.

Динамический анализ позволил выделить быстрый эффект основного медиатора и, как правило, медленный — модулятора или комедиатора. Теперь модифицированный принцип Дейла звучит так: «Один нейрон — один быстрый медиатор».

!!!В заключение укажем основные отличия электрической и химической передачи сигнала.

1. В электрическом синапсе источник постсинаптического тока — мембрана пресинаптической клетки. Здесь нет химического медиатора, и все факторы, влияющие на его высвобождение и действие (в частности, снижение внутриклеточной концентрации Са2+ или устранение разрушающих медиатор ферментов), на передаче возбуждения не сказываются.

2. В химическом синапсе постсинаптический ток генерируется за счет открытия каналов в постсинаптической мембране и обусловлен ионными градиентами постсинаптической клетки.

  • ОСНОВНЫЕ ТИПЫ СИНАПСОВ
  • Все синапсы можно классифицировать следующим образом:
  • 1) по их местоположению — центральные (головной и спинной мозг) и периферические;
  • 2) по принадлежности к соответствующим клеткам — нейро-нейрональныс. нервно-мышечные, нейро-железистые (нейро-секреторные);
  • 3) по месту контакта в нейро-нейрональных синапсах — аксо-аксональные, аксо-дендритические (дендритные), аксо-сома-тические, дендро-дендритические, дендро-соматические и др.;
  • 4) по расположению относительно друг друга (Г. Шеперд) — последовательные синапсы, реципроктные синапсы, синаптические гломерулы (различным способом соединенные через синапсы клетки);
  • 5) по развитию в онтогенезе — стабильные (например синапсы дуг безусловных рефлексов) и динамические (появляются в процессе индивидуального развития);
  • 6) по знаку их действия — возбуждающие и тормозящие;
  • 7) по способу передачи сигнала — электрические (в которых сигналы передаются электрическим током) и химические (в которых передатчиком или посредником является то или иное физиологически активное вещество). Существуют и смешанные — электрохимические — синапсы;
  • 8) химические синапсы классифицируются —по форме контакта : терминальные (колбообразное соединение) и преходящие (варикозное расширение аксона); —по природе медиатора : холинергические (медиатор — ацетилхолин), адренергические (норадреналин), дофаминергические (дофамин) ГАМКергические (гамма-аминомасляная кислота), глицинергические, глутаматергические, аспартатергические, пуринергические (медиатор — АТФ), — по скорости передачи возбуждения (сигнала) : быстрые возбуждающие (в передаче принимают участие классические медиаторы, потенциал сохраняется короткий промежуток времени) и медленные (локализованы в спинном мозге, относятся к пептидным синапсам, постсинаптические потенциалы после ритмической стимуляции сохраняются в течение нескольких минут).
  • Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:
Ссылка на основную публикацию
Adblock
detector