Тромбоциты. Структура тромбоцитов. Функции тромбоцитов. Функции гликопротеинов. Зона золя — геля гиалоплазмы.

Важнейшую роль тромбоцитов в живом организме открыл итальянский врач и патолог Джулио Биццоцеро, который в 1882 г. провел ряд блестящих экспериментов, имея в своем распоряжении лишь световой микроскоп.

Сегодня у нас куда больше измерительных приборов и вычислительных машин, выполняющих сложнейшие математические расчеты, однако множество вопросов остаются открытыми. Известно, что тромбоциты играют ключевую роль в остановке кровотечения из раны (гемостазе) и опасном перекрывании здорового сосуда (тромбозе).

Однако до сих пор неясно, как именно функционирует система гемостаза.

Какие причины приводят к ее переключению с защиты организма на развитие угрожающих жизни патологий? Какова роль тромбоцитов в регуляции процессов гемостаза и тромбоза? Не знаем мы, и зачем тромбоциты устроены так сложно, и не представляем всю последовательность событий, обеспечивающих формирование тромба в месте повреждения, а экспериментальные данные приносят с собой новые загадки.

Строение

Тромбоциты. Структура тромбоцитов. Функции тромбоцитов. Функции гликопротеинов. Зона золя - геля гиалоплазмы.

Тромбоциты (от греч. θρομβοζ — ‘сгусток’ и κυτοζ — ‘клетка’) — специализированные безъядерные клетки крови, имеющие форму диска диаметром около 3 мкм и толщиной около 0,5 мкм (рис. 1). Образуются они при фрагментации больших клеток костного мозга — мегакариоцитов и циркулируют в кровотоке в концентрации 200–400 тыс. клеток в 1 мкл крови. Живут тромбоциты в кровотоке в среднем 5–9 дней, а затем разрушаются в селезенке и печени.

Устроен тромбоцит довольно сложно. Снаружи он ограничен билипидным слоем мембраны, многочисленные впячивания которой (открытая канальцевая система) дают запас поверхности для изменения формы (рис. 2). Поддерживает ее и одновременно позволяет сильно менять цитоскелет (каркас) клетки.

Внутри находятся эндоплазматический ретикулум (хранилище ионов кальция, необходимых для сигнализации и выполнения тромбоцитом своих функций) и митохондрии (органеллы, обеспечивающие дыхание).

В цитозоле присутствуют гранулы, содержащие вещества, выплескивающиеся при активации клетки (переходе в новое состояние) во внеклеточное пространство.

В плотных гранулах содержатся нуклеотиды (АТФ, АДФ, ГТФ, ГДФ), серотонин, ионы кальция в высокой концентрации, в α-гранулах — различные белки (в том числе факторы свертывания крови), а в лизосомах — некоторые ферменты (коллагеназа, эластаза и др.).

Тромбоциты. Структура тромбоцитов. Функции тромбоцитов. Функции гликопротеинов. Зона золя - геля гиалоплазмы.

После активации тромбоцита на внешней поверхности его мембраны появляется отрицательно заряженный липид — фосфатидилсерин. С ним с помощью ионов кальция связываются некоторые факторы свертывания, формируя специальные комплексы.

Они во много раз ускоряют реакции, приводящие к желированию плазмы крови у места повреждения (этот процесс называется плазменным гемостазом).

Иными словами, фосфатидилсерин обеспечивает прокоагулянтную, способствующую плазменному гемостазу, функцию тромбоцитов.

Почему же век этих клеток крови столь недолог (эритроциты, например, живут три-четыре месяца), ведь в норме, в отсутствие серьезных повреждений сосудов, они практически не работают? Почему они имеют вид дисков? Зачем тромбоциту митохондрии, если его энергетические расходы крайне скромны? Зачем природе понадобилось ускорять реакции плазменного свертывания на клеточных мембранах? Для чего α-гранулы содержат белки свертывания, которые есть и в плазме крови? Это только некоторые из вопросов, не имеющих пока четких ответов.

Активация

Для выполнения своей основной функции — заделывания повреждения в стенке сосуда — тромбоциты должны перейти в активное состояние.

Как и у большинства клеток нашего организма, этот процесс протекает по следующей схеме: сигнал — рецептор — внутриклеточный сигнал — усилитель — регулятор — ответ (рис. 3).

Сигналом к активации служит появление в кровотоке агониста — специальной сигнальной молекулы, которая должна появляться только при необходимости и связываться со специфической молекулой, пронизывающей мембрану тромбоцита (рецептором).

Агонист взаимодействует с одним «хвостом» рецептора, выступающим снаружи, и это приводит к изменению другого, со стороны цитозоля, где появляется следующая сигнальная молекула — вторичный мессенджер.

Он запускает синтез еще нескольких мессенджеров, те, в свою очередь, — еще нескольких, и так сигнал распространяется в цитозоле и усиливается с помощью каскада внутриклеточных реакций, что в конечном итоге приводит к комплексному ответу тромбоцита. Важно, что в тромбоците существуют специальные регуляторные системы, модулирующие концентрации внутриклеточных мессенджеров на разных этапах активации, чтобы, например, не было реакции на следовые количества агониста.

Как же эта схема реализуется в нашем организме? В сосудах тромбоциты выталкиваются эритроцитами из основного потока и движутся вдоль стенок, проводя своего рода мониторинг их состояния. Одним из первых сигналов к активации тромбоцитов становится коллаген — основной белок соединительной ткани, обнажающийся при повреждении сосуда.

Обнаружив коллаген, они связываются с ним через специальные рецепторы, одновременно активируясь и прочно прикрепляясь к месту повреждения. Взаимодействие тромбоцита с коллагеном и ведет к запуску упомянутого внутриклеточного сигнального каскада и появлению в цитозоле вторичного мессенджера — инозитолтрифосфата (ИФ3).

Эта маленькая водорастворимая молекула способна быстро передвигаться в цитозоле и служит сигналом к выходу ионов кальция из внутриклеточных хранилищ.

А повышение его внутриклеточной концентрации может приводить к разнообразным ответам тромбоцита: выплескиванию содержимого гранул (секреции), изменению формы, прикреплению к стенке сосуда (адгезии), скреплению с другими тромбоцитами (агрегации), появлению прокоагулянтной активности (рис. 4).

После того, как кровеносная система уже распознала повреждение сосуда, в крови появляются еще три природных активатора тромбоцита — тромбин, АДФ и тромбоксан A2. Белок тромбин образуется из предшественника, протромбина, в плазме крови, но массово — уже на мембранах активированных тромбоцитов.

При секреции их плотных гранул выбрасывается большое количество АДФ (маленькая молекула, выполняющая в клетках в основном энергетические функции), и гораздо меньше АДФ высвобождается из поврежденных клеток эндотелия, выстилающего внутреннюю поверхность сосудов. Из арахидоновой кислоты, находящейся в мембранах активированных тромбоцитов, синтезируется тромбоксан А2.

Связывание этих трех активаторов со своими рецепторами на мембране тромбоцита приводит, как и в случае с коллагеном, к появлению ИФ3 в цитозоле и повышению в нем концентрации кальция (рис. 4). Таким образом, все три растворимых активатора и коллаген действуют по одному пути, однако вызывают разные тромбоцитарные ответы. Например, тромбоксан А2 провоцирует выброс плотных гранул, а АДФ — нет.

Активация отдельно коллагеном или тромбином вызывает все перечисленные ответы одновременно, а совместно — приводит к появлению группы прокоагулянтных тромбоцитов и синтезу тромбина на их мембранах. Видимо, существуют еще недостаточно изученные различия в сигнализации, запускаемой разными агонистами. Чтобы случайная активация не превращала тромбоцит в настоящую «бомбу», несущуюся в кровотоке и запускающую всю систему свертывания, в организме неповрежденные клетки эндотелия постоянно выделяют простациклин и оксид азота, которые блокируют активацию клеток, препятствуя повышению в них концентрации кальция.

Тромбоциты. Структура тромбоцитов. Функции тромбоцитов. Функции гликопротеинов. Зона золя - геля гиалоплазмы.

Сигнализация — один из самых сложных и плохо изученных разделов в исследовании тромбоцитов. По устройству каждого рецептора и сигнального пути существует множество вопросов, и самый простой из них: зачем вообще столько активаторов?

Цитоскелет и изменение формы

Цитозоль тромбоцита пронизан трехмерной сетью из водонерастворимых белковых нитей (филаментов), которая формирует цитоскелет. Филаменты состоят из полимеризованного белка актина и обеспечивают изменение формы тромбоцита при активации.

Кроме того, непосредственно под плазматической мембраной находится мембранный скелет, связанный с цитоплазматическими «хвостами» некоторых рецепторов. Состоит он из коротких актиновых филаментов, соединенных друг с другом с помощью специальных белков.

Мембранный скелет не только поддерживает плазматическую мембрану, регулируя контуры клетки, и стабилизирует ее, предотвращая фрагментацию, но и регулирует распределение в плоскости мембраны рецепторов, прикрепленных к нему.

Также предполагают, что он играет важную роль в регуляции различных внутриклеточных событий, которые запускаются при активации.

Тромбоциты. Структура тромбоцитов. Функции тромбоцитов. Функции гликопротеинов. Зона золя - геля гиалоплазмы.

Интересно, что цитоскелет — структура динамичная, благодаря которой тромбоцит может не только менять форму, но и отращивать «щупальца» (филоподии). С их помощью он распластывается по поверхности поврежденного сосуда (рис. 5) и легче прилепляется к другим тромбоцитам (рис. 6).

Относительно недавно было обнаружено, что при сильной активации (одним тромбином или вместе с коллагеном) тромбоциты разделяются на две группы (субпопуляции), сильно отличающиеся по свойствам и даже форме, что предполагает принципиально разную организацию в них цитоскелета.

Одни из них («обычные» активированные) имеют вид амеб — комков с филоподиями, другие (прокоагулянтные, так как на внешней поверхности их мембраны много фосфатидилсерина) — шариков без «щупалец».

Полученные в нашей лаборатории данные свидетельствуют о том, что некоторые мембранные рецепторы, отвечающие за связывание клеток с поверхностью и друг с другом, у тромбоцитов из двух субпопуляций неодинаково прикреплены к цитоскелету. А это значит, что они могут по-разному взаимодействовать с поврежденной сосудистой стенкой и друг с другом в формирующемся тромбе.

Последовательность процессов при перестройке цитоскелета тромбоцита вообще изучена пока достаточно мало, а тут уже новый вопрос: зачем одним клеткам при активации становиться «амебами», а другим — «шариками»?

Адгезия и агрегация

Тромбоциты. Структура тромбоцитов. Функции тромбоцитов. Функции гликопротеинов. Зона золя - геля гиалоплазмы.

Чтобы залатать неисправный сосуд и предотвратить кровопотерю, тромбоцитам нужно прикрепиться к месту «аварии» (адгезия) и друг к другу (агрегация). Первые обнаружившие повреждение клетки прикрепляются к нему и формируют нижний слой тромба. К ним прилепляются новые тромбоциты из потока, и постепенно образуется тромбоцитарный агрегат (рис. 6). Но между клетками в нем остаются промежутки, через которые может просачиваться плазма крови, поэтому она желируется вблизи места повреждения в результате реакций между факторами свертывания. Образующийся гель заполняет промежутки между тромбоцитами и полностью останавливает вытекание крови из раны. Адгезия и агрегация в норме ведут к перекрыванию места «аварии» и предотвращению кровопотери, а при патологических условиях, плохо пока изученных, вызывают формирование тромбов, мешающих нормальному кровотоку в здоровых сосудах. Их тромбирование является причиной многих сердечно-сосудистых заболеваний, в том числе инфарктов и инсультов.

Адгезия происходит за счет связывания специальных рецепторов, гликопротеинов (ГП) VI и Ib и интегрина αIIbβ3 (или ГП IIbIIIa), на мембране тромбоцита с определенными белками на поверхности поврежденного сосуда.

Агрегация же происходит за счет ГП Ib и IIbIIIa и представляет собой образование связи между двумя рецепторами посредством растворенного в плазме крови лиганда (от лат. ligare — ‘связывать’; вещество, специфически соединяющееся с рецептором).

Гликопротеинам Ib и VI для связывания лигандов не требуется дополнительных условий, в отличие от ГП IIbIIIa, который приобретает такую способность только благодаря своим конформационным изменениям, происходящим после активации тромбоцита.

Фибриноген и фактор Виллебранда, основные лиганды интегрина αIIbβ3, обладают симметричной структурой и поэтому взаимодействуют одновременно с двумя рецепторами на соседних активированных тромбоцитах, формируя между ними скрепляющие «мостики» (рис. 4).

Рассмотрим приближенную последовательность событий, происходящих с тромбоцитами при нарушении целостности сосуда. Повреждение эндотелия приводит к выставлению в кровоток коллагена, на который из плазмы крови тут же садятся молекулы фактора Виллебранда.

Тромбоциты, приносимые к месту травмы, связываются с ними, а затем с коллагеном через рецепторы ГП Ib и ГП VI соответственно. Это запускает сигнальные процессы, приводящие к активации интегринов αIIbβ3 и к началу формирования тромба.

По мере того как клетки склеиваются друг с другом за счет интегринов αIIbβ3, они секретируют тромбоксан А2 и АДФ, которые активируют интегрины αIIbβ3 на проносящихся в потоке тромбоцитах, вовлекая их в растущий тромб.

В нашем организме размеры сосудов и скорости кровотока меняются от аорты с диаметром 2,5 см и средней скоростью потока 48 см/с до мельчайших капилляров диаметром 0,0008 см и скоростью течения крови 0,1 см/с.

Тромбоциты обладают уникальной способностью формировать стабильные контакты друг с другом в этом широком диапазоне условий. А удается им это благодаря тому, что при разных условиях вклад различных рецепторов, осуществляющих прикрепление тромбоцитов к стенке сосуда или друг к другу, сильно меняется.

И когда работа одного рецептора оказывается неэффективной, инициативу подхватывает другой, лучше приспособленный к данным условиям.

Напомним, что традиционной схемой скрепления двух тромбоцитов является образование связей «рецептор на одной клетке — лиганд в плазме — рецептор на другой». Однако недавно нам удалось показать, что существует еще одна схема — «рецептор на одной клетке — лиганд на другой» [5].

На внешней поверхности мембраны прокоагулянтных тромбоцитов непонятным пока образом удерживается большое количество белков α-гранулярного происхождения, в частности фибриноген и фактор Виллебранда.

Из-за этой белковой «шубы» такие тромбоциты некоторое время назывались в литературе «укутанными», при этом интегрины αIIbβ3, основные рецепторы агрегации, на них парадоксальным образом неактивны и не могут связывать свои лиганды.

В связи с этим долгое время считалось, что прокоагулянтные тромбоциты вообще не могут агрегировать, однако, как мы выяснили, способны слепляться с «обычными» активированными тромбоцитами (но не друг с другом). И происходит это за счет связывания активных интегринов αIIbβ3 на поверхности «обычных» активированных тромбоцитов и лигандов этого рецептора, удерживаемых на поверхности прокоагулянтных тромбоцитов в составе их белковой «шубы».

Сегодня уже достаточно хорошо известно, как запускается и происходит рост тромба, но неясно, как этот процесс останавливается.

Почему в норме рост тромба со временем прекращается, не приводя к закупорке сосуда? Вероятно, ответ на этот вопрос кроется в сложном одновременном действии множества факторов, оказывающих влияние на рост тромба, включая локальные условия кровотока и концентрации растворимых агонистов — таких как АДФ, тромбоксан А2 и тромбин.

Итак, прокоагулянтные тромбоциты по сравнению с «обычными» активированными обладают лучшей способностью ускорять плазменный гемостаз и особым механизмом агрегации — могут скрепляться с «обычными» активированными тромбоцитами, но не с себе подобными.

Формирование субпопуляций, обладающих уникальными комбинациями свойств, — один из самых интересных и сложных феноменов в науке о тромбоцитах. Экспериментальных данных, накопленных в результате более 15 лет продолжающихся исследований, достаточно, чтобы предполагать, что субпопуляции этих клеток играют разные роли в регуляции роста тромба.

Сейчас в нашей и нескольких зарубежных лабораториях ведется активная работа по выявлению (пато)физиологической роли тромбоцитарных субпопуляций и исследование их пространственного распределения в растущих тромбах. Эти знания позволят разработать новые лекарства, избирательно влияющие на клетки разных субпопуляций.

Так мы сможем вмешиваться в регуляцию роста тромба и предотвращать развитие патологических процессов (тромбоза), а там, где это требуется, наоборот, стимулировать нормальный гемостаз.

***

Тромбоциты обеспечивают остановку кровотечения и одновременно играют главную роль в тромбозе. Постепенно все больше вопросов, связанных с этими клетками, находят ответы, но тромбоциты таят в себе еще очень много секретов.

Достаточно добавить, что в последние 20 лет было обнаружено их участие в иммунном ответе, воспалении, регенерации тканей, ангиогенезе (образовании новых кровеносных сосудов) и даже развитии опухолей.

Дальнейшее изучение тромбоцитов поможет лучше понять протекание многих жизненно важных процессов нашего организма, но в первую очередь станет решающим шагом в победе над тромбозом — основной причиной смертности в развитых странах.

Функции тромбоцитов

  • Рубрики
    • Анатомия
    • Без рубрики
    • БОЛЕЗНИ
    • ДИЕТЫ
    • ЗДОРОВЫЙ ОБРАЗ ЖИЗНИ
    • ЛЕКАРСТВЕННЫЕ ПРЕПАРАТЫ
    • Лечение за рубежом
    • Микробиология
    • МКБ-10
      • Класс I
      • Класс II
      • Класс III
      • Класс IV
      • Класс V
      • Класс VI
      • Класс VII
      • Класс XI
    • НЕВРОЛОГИЯ И НЕЙРОХИРУРГИЯ
    • ОРГАНИЗМ ЧЕЛОВЕКА
    • ОСНОВНЫЕ ПОНЯТИЯ
    • ПЕРВАЯ ПОМОЩЬ
    • Разное
    • СЛОВАРЬ МЕДИЦИНСКИХ ТЕРМИНОВ
    • ФАРМАКОГНОЗИЯ
      • Лекарственные растения
      • Общие положения
    • ФАРМАКОЛОГИЯ
    • ФИЗИОЛОГИЯ ЧЕЛОВЕКА

Кровяные пластинки образуют главную линию обороны организма против внезапных потерь крови. Они аккумулируются почти тотчас в месте повреждения кровеносных сосудов и закупоривают их вначале временной, а затем постоянной тромбоцитарной пробкой, облегчают превращение  фибриногена в фибрин в поврежденном участке.

Циркулирующие в крови тромбоциты имеют дисковидную форму, диаметром от 2 до 5 мкм, объемом 5- 10 мкм3.

Тромбоциты оказались весьма сложным клеточ­ным комплексом, представленным системами мембран, микротрубо­чек, микрофиламентом и органелл.

Используя технику, позволя­ющую разрезать распластанный тромбоцит параллельно поверхности, в клетке выделяют несколько зон: периферическую, золя-гель, внут­риклеточных органелл (рис.6.4.).

Тромбоциты. Структура тромбоцитов. Функции тромбоцитов. Функции гликопротеинов. Зона золя - геля гиалоплазмы.Рис.6.4. Ультраструктурная организация тромбоцита.Сечение параллельное горизонтальной плоскости.

ЕС — периферическая зона тромбоцита,
СМ — трехслойная мем-брана,
SMF — субмембранный филомент,
МТ— микротрубочки,
Gly — гликоген.
Зона органнелл — М — митохондрии,
G — гранулы,
DB — плотные гранулы,
DTS — система плотных трубочек,

CS — система открытых канальцев.

На наружной поверхности перифе­рической зоны располагается покров, толщиной до 50 нм, содержащий плазматические факторы свертывания крови, энзимы, рецепто­ры, необходимые для активации тромбоцитов, их адгезии (прикле­ивания к субэндотелию) и агрегации (приклеиванию друг к другу).

Так, мембрана тромбоцитов содержит «мембранный фосфолипидный фактор 3» — «фосфолипидную матрицу», формирующую активные коагуляционные комплексы с плазменными факторами свертывания крови.

Мембрана богата также арахидоновой кислотой, поэтому важным ее компонентом является фермент — фосфолипаза А,, спо­собная образовывать свободную арахидоновую кислоту для синтеза простагландинов, из метаболитов которых формируется короткоживущий агент — тромбоксан А2, вызывающий мощную агрегацию тромбоцитов.

Активация фосфолипазы А2 в мембране тромбоцита осуществляется при ее контакте с коллагеном и фактором Виллебранда — адгезивными белками субэндотелия, обнажающимися при повреждении  эндотелия  сосудов.

В липидный бислой мембраны тромбоцитов встроены гликопротеины I, II, III, IV, V.Гликопротеин I состоит из субединиц — Iа, Iв, Iс. Iа — рецептор, ответственный за адгезию тромбоцитов к коллагену субэндотелия.

Комплекс «Iв — фактор свертывания крови IX» на поверхности кровяных пластинок выполняет функцию рецеп­тора для фактора Виллебранда, что также необходимо для адгезии пластинок на субэндотелии.

Iс обеспечивает связывание с еще од­ним адгезивным белком субэндотелия — фибронектином, а также распластывание   пластинки  на   субэндотелии.

Гликопротеин II состоит из субединиц IIа и IIв, необходимых для всех видов агрегации тромбоцитов.

Гликопротеин IIа  с гликопротеином IIв образуют Са-зависимый комплекс, связывающий на тромбоцитах фибриноген, что обеспечивает дальнейшую агрегацию тромбоцитов и ретракцию (сокращение) сгустка.

Гликопротеин V гидролизируется тромбином, поддерживает агрегацию тромбоцитов. Снижение в мембране тромбоцитов содержания различных субеди­ниц  гликопротеинов   I-V  вызывает  повышенную  кровоточивость.

К нижнему слою периферической зоны прилегает зона золягеля гиалоплазмы, в свою очередь отделяющая зону внутриклеточных органелл. В указанной зоне вдоль края клетки располагается краевое кольцо микротрубочек, контактирующее с микрофиламентом, пред­ставляющим сократительный аппарат тромбоцита.

При стимуляции тромбоцита кольцо микротрубочек, сокращаясь, смещает гранулы к центру клетки («централизация гранул»), сжимает их, вызывая секре­цию содержимого наружу через систему открытых канальцев.

Сокра­щение кольца микротрубочек позволяет тромбоциту также образовы­вать псевдоподии,  что увеличивает его  способность  к агрегации.

Зона органелл тромбоцитов содержит плотные гранулы, альфа-гранулы I и II типов. В плотных гранулах находятся АДФ, АТФ, кальций, серотонин, норадреналин и адреналин.

Кальций участвует в регуляции адгезии, сокращении, секреции тромбоцита, активации его фосфолипаз и, следовательно, продукции эндоперекиси, про­стагландинов, в ходе дальнейших превращений которых образуется тромбоксан А,.

АДФ секретируется в больших количествах при адгезии тромбоцитов к стенке сосуда и способствует прикреплению циркулирующих тромбоцитов к адгезированным, тем самым под­держивая рост тромбоцитарного агрегата. Серотонин (5-гидроксит-риптамин) секретируется тромбоцитом во время «реакции освобож­дения гранул» и обеспечивает вазоконстрикцию в месте поврежде­ния.

Альфа-гранулы I типа содержат антигепариновый фактор пласти­нок 4, фактор роста тромбоцитов, тромбоспондин (гликопротеин G) и др. Антигепариновый фактор тромбоцитов 4 секретируется тром­боцитами под влиянием АДФ, тромбина, адреналина, сопровождая агрегацию тромбоцитов.

Тромбоспондин образует комплекс с фиб­риногеном на поверхности активированных тромбоцитов, необходи­мый для формирования тромбоцитарных агрегатов. Тромбоцитарный ростковый фактор (ТРФ) — полипептид, стимулирующий рост глад­ких мышц сосудов и фибробластов, восстановление сосудистой стен­ки и соединительной ткани.

Благодаря его свойствам, кровяные пластинки поддерживают целостность сосудистой стенки. Больные с тромбоцитопенией имеют сниженную устойчивость стенки капилля­ра, поэтому петехии (точечные кровоизлияния в коже) появляются вслед за легкими травмами или изменением давления крови. Пете­хии вызваны слущиванием эндотелия капилляров.

В нормальных условиях возникший дефект устраняется пластинками, секретирующими  ТРФ.

Альфа-гранулы II типа содержат лизосомальные энзимы (кислые гидролазы). Большая часть гранул исчезает после адгезии или агрега­ции тромбоцита.

Этот феномен («реакция освобождения гранул») имеет место после активации тромбоцита различными соединениями — тром-боксаном А2, АДФ, адреналином, тромбином, протеолитическими эн­зимами,   бактериальными эндотоксинами,  коллагеном и др.

Под тромбоцитопоэзом пони­мают процесс образования тромбоцитов в организме. В основном, он протекает в костном мозге и включает следующие этапы: колониеобразующая единица мегакариоцитарная (КОЕ-мег) -> промега-кариобласт -> мегакариобласт -> промегакариоцит -> зрелый мегака-риоцит ->  тромбоцитогенный  мегакариоцит -> тромбоциты  (рис.6.5.).

Тромбоциты. Структура тромбоцитов. Функции тромбоцитов. Функции гликопротеинов. Зона золя - геля гиалоплазмы.Рис.6.5. Схема дифференцировки клеток мегакариоцитарной серии.СКК — стволовая кроветворная клетка; КОЕгммэ — КОЕгрануло-цитарно-мегакариоцитарно-моноцитарно-эритроцитарная; КОЕэрмег — КОЕэритроцитарно-мегакариоцитарная; КОЕмег — КОЕмегакариоцитарная; КОЕмег-1 — менее диффе-ренцированная; КОЕмег-2 — более дифференцированная клетка; 0.07, 0.48, 0.74 — вероятность вовлечения клетки-предшественни-цы в мегакариоцитарную дифференциацию.

Истинные митозы, т.е. деление клеток, присущи только КОЕ-мег. Для промегакариобластов и мегакариобластов характерен эндомитоз (глава I), т.е. удвоение ДНК в клетке без ее деления. После ос­тановки эндомитоза, в основном после 8, 16, 32, 64-кратного уд­воения ДНК, мегакариобласт начинает дифференциацию до тромбо­цитарного  мегакариоцита,  образующего  тромбоциты.

В костном мозге тромбоцитогенные мегакариоциты локализованы преимущественно на поверхности синусного эндотелия и их цитоплазматические отростки проникают в просвет синуса через эндо­телий.
Одни из них проникают на 1-2 мкм в просвет синуса и фиксируют мегариоцит на эндотелии (функция «якоря»).

Второй тип отростков представлен вытянутыми цитоплазматическими лентами (до 120   мкм   в  длину),   входящими   в   просвет   синуса   и   получившими название протромбоцитов. Их количество у одного мегакариоцита может достигать 6-8. В просвете синуса цитоплазма протромбоцита после локальных сокращений разрывается, и он образует около 1000 тромбоцитов.

В циркулирующее русло поступают и протромбоциты. Вышедшие в кровь протромбоциты достигают микроциркуляторного русла легких, где из них освобождаются тромбоциты. Поэтому ко­личество тромбоцитов оказывается более высоким в легочных венах, чем в легочной артерии.

Количество тромбоцитов, образовавшихся в легких,   может достигать  7— 17%  от  массы  тромбоцитов  в  крови.

У человека время полного созревания мегакариоцитов занимает 4-5 дней. Костный мозг человека содержит около 15 x 106 мегакариоцитов/кг веса тела. Дневная продукция тромбоцитов у человека 66000+14600 в 1 мкл крови.

В среднем мегакариоцит высвобождает до 3000 тромбоцитов. Количество тромбоцитов в крови взрослого человека достигает 150-375 x 109л; у детей —150-250 x 109/л.

Содержа­ние тромбоцитов в крови взрослого ниже 150 x 109/л рассматривается как тромбоцитопения.

Общая популяция тромбоцитов представлена циркулирующими в крови (70%) и находящимися в селезенке  (30%).  Накопление тромбоцитов в селезенке происходит благодаря более медленному их движению через извилистые селезеночные корды и занимает до 8 минут. Сокращение селезенки (например, вызванное адреналином) освобождает пластинки в общий кровоток.

Существование селезе­ночного депо тромбоцитов объясняет, почему их количество неиз­менно выше у спленэктомированных (с удаленной селезенкой) лю­дей, чем у нормальных индивидуумов.

У пациентов со спленомегалией (увеличенной селезенкой) значительная часть циркулирующих тромбоцитов медленно продвигается через увеличенную селезенку, количество пластинок в крови оказывается сниженным, возникает тяжелая  тромбоцитопения.

Продолжительность жизни тромбоцитов человека колеблется от 6,9 до 9,9 дней. Их разрушение происходит, преимущественно, в кост­ном  мозге  и,  в  меньшей  степени,  в  селезенке  и  печени.

В плазме крови людей обнаружен колониестимулируюший фактор мегакариоцитарный (КСФ-мег), стимулирующий митозы и диффе­ренциацию КОЕ- мег. Стимулом для его образования является ис­тощение содержания мегакариоцитов и их предшественников в кост­ном мозге.

Регуляция тромбоцитопоэза в фазу немитотического раз­вития мегакариоцитов осуществляется другим гуморальным фактором — тромбопоэтином. Его количество в плазме повышается при усилении потребления тромбоцитов (воспаление, необратимая агре­гация тромбоцитов).

Тромбопоэтин необходим для полного созрева­ния цитоплазмы мегакариоцитов, нормального формирования в ней тромбоцитов. Регуляция мегакариоwитопоэза включает и особые ве­щества — его гуморальные ингибиторы, угнетающие как пролиферативную, так и немитотическую стадии развития мегакариоцитов.

Ингибитор деления КОЕ-мег выделен из активированных тромбо­цитов. Это гликопротеин, массой в 12-17 кд. Источником ингиби­тора тромбоцитопоэза  является,  также,  селезенка.

Тромбоциты: друзья или враги?

  • Сегодня мы поговорим о клетках, жизнь без которых, без преувеличения, была бы невозможна.
  • О тромбоцитах рассказывает врач-терапевт «Клиника Эксперт» Курск Галина Петровна Епишева.
  • — Галина Петровна, что такое тромбоциты?

— Это один из видов форменных элементов крови (наряду с эритроцитами, лейкоцитами). Иногда их ещё называют кровяными пластинками. Диаметр тромбоцита невелик – всего 2-3 мкм. В нём нет ядра. В тромбоците имеется большое количество гранул, содержащих различные по химическому составу вещества.

  1. Тромбоциты вырабатываются красным костным мозгом, их предшественником являются крупные костномозговые клетки – мегакариоциты.
  2. — Какова роль тромбоцитов в организме?
  3. — На сегодняшний день известны следующие функции тромбоцитов:
  • они защищают стенки сосудов от механических повреждений;
  • предотвращают кровопотери;
  • питают сосуды;
  • участвуют в регенерации (восстановлении) повреждённых тканей.
  • Также имеются сообщения о том, что тромбоциты обладают определённым антипаразитарным действием.
  • — Какова норма тромбоцитов у человека?
  • — Число тромбоцитов измеряют в тысячах на 1 мкл (микролитр) крови (также используется измерение в литре). Выделяют норму в зависимости от пола:
  • для мужчин – 200-400 тыс/мкл (или, иначе, 200-400х109/л);
  • для женщин – 180-320 тыс/мкл. Во время менструации показатель может снижаться, колеблясь от 75 до 220 тыс/мкл. Уменьшение может наблюдаться и при беременности – примерно 100-310 тыс/мкл.

У детей число тромбоцитов меняется соответственно возрасту.

Следует учитывать, что показатели нормального количества тромбоцитов в крови могут меняться в зависимости от конкретной лаборатории, в которой выполняется анализ.

— Если тромбоциты повышены или понижены, о чём это говорит? Что может приводить к увеличению или уменьшению их числа?

 — Причинами повышения тромбоцитов могут быть:

  • стресс;
  • физические перегрузки;
  • использование некоторых медикаментов (увеличение числа тромбоцитов как побочное действие). Например, это могут быть кортикостероиды, адреналин;
  • травмы (перелом, порезы, ожоги);
  • эритроцитоз;
  • некоторые виды лейкозов (лейкемий);
  • ряд инфекций;
  • энтерит;
  • пневмонии;
  • острый менингит;
  • анемии;
  • аутоиммунные заболевания (ревматоидный артрит, саркоидоз, васкулит);
  • цирроз печени;
  • удаление селезёнки.

Причинами уменьшения числа тромбоцитов могут быть:

  • беременность;
  • идиопатическая тромбоцитопеническая пурпура (болезнь Верльгофа);
  • применение ряда медикаментов (снижение числа тромбоцитов как побочное действие). Например, это могут быть антидепрессанты, антибиотики;
  • онкопатология, в том числе опухоли системы кроветворения;
  • химиотерапия;
  • гипотиреоз и гипертиреоз;
  • кровотечения;
  • тяжёлые травмы;
  • длительные менструации;
  • болезни печени (в частности гепатиты);
  • хирургические вмешательства;
  • авитаминоз;
  • отравление алкоголем, тяжёлыми металлами;
  • ВИЧ инфекция.

— Бывает ли так, что число тромбоцитов в норме, а их функции нарушены?

— Да. К нарушению функции тромбоцитов может приводить множество причин. Перечислю некоторые:

  • мутация генов, отвечающих за мембранные гликопротеины тромбоцита. Такое бывает, например, при тромбастении – болезни Бернара-Сулье;
  • аномалии тромбоцитарных гранул, в частности, дефицит плотных гранул, содержащих АТФ, кальций, серотонин;
  • изменение функции цитозольных ферментов, иных белков тромбоцитов и ряд других.

— Как выявить проблемы с тромбоцитами, в частности, изменения их числа, функции?

— Выполняется ряд исследований. Среди них:

  • общий анализ крови с определением тромбоцитов;
  • коагулограмма (исследование свёртывания крови);
  • изучение агрегации тромбоцитов.
  1. Подробнее об общем анализе крови можно прочитать в нашей статье
  2. — При каких патологических процессах, состояниях назначают анализ на тромбоциты?
  3. — Перечень их обширен. Это:
  • травмы;
  • тромбозы и тромбоэмболии;
  • кровопотери;
  • анемии и эритроцитозы;
  • лейкозы, лимфогранулематоз, иные онкологические патологии;
  • отравления;
  • энтериты;
  • заболевания печени;
  • гипо- и гипертиреоз;
  • гиперспленизм (усиление функции селезёнки);
  • затяжные менструации;
  • алкоголизм;
  • химиотерапия.

— А какие жалобы, признаки могут стать поводом для того, чтобы исследовать число и функции тромбоцитов?

— Характерно появление на коже и/или слизистых оболочках кровоизлияний/кровоподтёков («синяков»), причём необязательно связанных с получением даже незначительной травмы. Иными словами, они могут возникать спонтанно. Также пациент может отмечать кровоточивость дёсен, возможны носовые кровотечения. У женщин увеличивается продолжительность менструаций.

— Как правильно подготовиться к анализу на тромбоциты?

— Если мы говорим об определении числа тромбоцитов в общем анализе крови, то это:

  • соблюдение 12-часового голода до момента сдачи крови;
  • исключение жирной пищи и алкоголя накануне исследования;
  • за 2 часа до взятия крови желательно ограничить физические и эмоциональные нагрузки, стрессы, за полчаса нельзя курить.

— К какому врачу нужно обращаться при появлении симптомов, свидетельствующих о возможной проблеме со стороны тромбоцитов?

— К терапевту, врачу общей практики или узкому специалисту — отоларингологу (например, при носовом кровотечении), гинекологу (при длительной менструации). По результатам опроса, осмотра и анализов может быть рекомендована консультация гематолога или иного узкого специалиста.

  • Записаться на приём к специалистам можно здесь
  • ВНИМАНИЕ: услуга доступна не во всех городах
  • Беседовал Энвер Алиев
  • Редакция рекомендует:

Лейкоциты. О чём расскажет анализ крови?

Что показывает биохимический анализ крови?

Иммунитет не на стороне Розы Люксембург и Клары Цеткин. Почему природа не признаёт равенство?

  1. Для справки:
  2. Епишева Галина Петровна
  3. Окончила факультет «Лечебное дело» Курского государственного медицинского университета в 1990 году.

С 1990 по 1991 год проходила интернатуру по терапии. Врач высшей категории.

В настоящее время врач-терапевт в «Клиника Эксперт» Курск. Принимает по адресу: ул Карла Либкнехта, д. 7.

Тромбоциты

  • Тромбоциты – клетки крови, основная функция которых – участие в свертывании крови.
  • Синонимы русские
  • Кровяные пластинки, бляшка Биццоцеро.
  • Синонимы английские
  • Platelet Count, Thrombocyte, Thrombocyte count, PLT.
  • Единицы измерения

*109/л (10 в ст. 9/л).

  1. Для чего используется этот анализ?
  2. Для выявления нарушений свертывания или заболеваний костного мозга.
  3. Когда назначается исследование?
  • При общем анализе крови, который необходим по различным причинам.
  • В случаях необъяснимых или длительных кровотечений.
  • При диагностике заболевания костного мозга или при контроля за его течением.
  • Какой биоматериал можно использовать для исследования?
  • Венозная или капиллярная кровь.
  • Общая информация об исследовании

Тромбоциты, как и другие клетки крови, образуются в костном мозге. Некоторые стволовые клетки в костном мозге превращаются в мегакариоциты, от которых тромбоциты «отщепляются» и выходят в кровь. Они лишены ядра и имеют относительно небольшой размер (2-3 микрона в диаметре), это самые маленькие клетки крови.

Повреждение сосуда вызывает образование веществ, которые переводят тромбоциты в активную форму. Тромбоциты уплощаются и обретают способность склеиваться друг с другом и со стенкой сосуда, создавая тромб, который способствует остановке кровотечения.

Продолжительность жизни тромбоцитов около 10 дней, поэтому требуется их постоянное обновление. Если баланса между образованием тромбоцитов в костном мозге и разрушением нет, может возникать склонность к повышенной кровоточивости или, напротив, к тромбообразованию.

  1. В ходе анализа происходит подсчет количества тромбоцитов в единице крови – в литре или в микролитре.
  2. Для чего используется исследование?
  3. Необходимость в определении количества тромбоцитов, а также их функциональных возможностей может возникнуть при нарушениях свертывания или заболеваниях костного мозга, таких как лейкемия (и при подозрении на них).
  4. Когда назначается исследование?
  5. Подсчет количества тромбоцитов, как правило, входит в рутинный общий анализ крови, который проводится как планово, так и при различных болезнях и патологических состояниях, перед хирургическими вмешательствами.
  6. Такой тест назначают пациентам, страдающим от необъяснимых синяков, избыточного количества крови при менструации, кровоточивости десен, носовых кровотечений, или тем, у кого кровотечение из небольшой раны длится достаточно продолжительное время.
  7. Что означают результаты?
  8. Референсные значения
Возраст Референсные значения
Меньше 10 дней 99 — 421 *10^9/л
10 дней – 1 месяц 150 — 400 *10^9/л
1-6 месяцев 180 — 400 *10^9/л
6 месяцев – 1 год 160 — 390 *10^9/л
1-5 лет 150 — 400 *10^9/л
5-10 лет 180 — 450 *10^9/л
10-15 лет 150 — 450 *10^9/л
Больше 15 лет 150 — 400 *10^9/л

Значительное увеличение количества тромбоцитов (больше 1 млрд на литр (1000 *109/л) способствует их более активному «склеиванию» и тромбообразованию.

У взрослых нормальное число тромбоцитов колеблется в пределах от 150 до 450 млн на литр крови (150-450 *109/л). Если их становится меньше 20 млн на литр (20 *109/л), это может приводить к спонтанным кровотечениям и угрожать жизни человека.

Снижение тромбоцитов до уровня менее 5 миллионов на литр (5 *109/л) с высокой вероятностью приведет к смерти.

Причины повышения уровня тромбоцитов

  • Злокачественные образования в костном мозге (миелопролиферативные заболевания) и в других органах.
  • Истинная полицитемия.
  • Железодефицитная анемия.
  • Туберкулез.
  • Травмы, острые или хронические инфекции.
  • Удаление селезенки (так как в ней разрушаются старые тромбоциты).
  • Воспалительные заболевания кишечника.
  • Аутоиммунные заболевания (системная красная волчанка, ревматоидный артрит).
  • Почечная недостаточность.
  • Сильная кровопотеря.

Причины понижения уровня тромбоцитов

  • Уменьшение образования тромбоцитов в костном мозге.
  • Увеличение скорости их разрушения или использования.
  • Иммунная тромбоцитопеническая пурпура – самая частая причина чрезмерного разрушения тромбоцитов. В этом случае появляются антитела к собственным тромбоцитам. Антитела связываются с тромбоцитами, что вызывает их быстрое разрушение, так что продолжительность их жизни сокращается до неск

Тромбоциты в крови

Созинова А.В., акушер-гинеколог, ведет непрерывную практику с 2001 года
Январь, 2020.

Синонимы: тромбоциты, platelet count, PC, plt.

Тромбоциты являются кровяными клетками, а их концентрацию определяют при проведении общего анализа крови. В бланке ОАК тромбоциты обозначаются как platelet count или PC. Кровь для исследования ее состава, в том числе и подсчете количества тромбоцитов, забирается из пальца (капиллярная) либо из вены. Единицей измерения тромбоцитов служит число (N) клеток, помноженное на 109 на литр.

Тромбоциты, как и остальные форменные элементы, формируются в красном костном мозге. Срок их жизни в кровотоке около 7 – 12 суток. Разрушение и распад клеток происходит в селезеночной и печеночной тканях.

Основной функцией тромбоцитов является осуществление гемостаза, то есть прекращение кровотечения. Контакт с поврежденными тканями вызывает трансформацию клеток, у них формируется до 10 отростков, при расправлении которых рана закрывается тромбоцитарной массой (тромбом). Таким образом, тромбоциты предупреждают вытекание большого количества крови из поврежденных мягких тканей.

  • Другой не менее важной функцией тромбоцитов является защита травмированного участка от проникновения в него патогенных микроорганизмов (выделяют лизоцим и В-лизин).
  • Также тромбоциты участвуют в процессах гемостаза (поддержание внутренней среды организма), питании эндотелия капилляров (внутренний слой стенок сосудов) и регенеративных процессах поврежденных тканей за счет выделения факторов роста, стимулирующих деление клеток.
  • В научной работе 2018 года приводятся данные, показывающие, что помимо вышеозначенных функций, тромбоциты также играют важную роль в иммунной системе человека1. 

Показания

Назначение ОАК с исследованием концентрации тромбоцитов показано всем пациентам, обратившимся в поликлинику, проходящим плановый медицинский осмотр или получившим направление на стационарное лечение. Также определение тромбоцитов назначается всем пациентам, нуждающимся в операции (экстренной или плановой). К основным показаниям исследования тромбоцитов относятся:

  • подозрение на нарушения в системе гемостаза (кровоточивость, образование подкожных гематом);
  • подозрение на злокачественный процесс;
  • расстройства иммунитета;
  • бронхолегочная патология;
  • заболевания пищеварительного тракта и мочевыделительной системы (язва желудка, гломерулонефрит);
  • сердечно-сосудистая патология;
  • эндокринные расстройства (ожирение, сахарный диабет).

Симптомы, которые должны насторожить

  • красные, фиолетовые синяки на коже
  • частые носовые кровотечения, кровоточивость десен
  • длительная кровоточивость даже небольших ран или порезов
  • обильные менструальные кровотечения у женщин

Подготовка к исследованию

Перед сдачей ОАК следует отказаться за сутки до процедуры от употребления алкогольных напитков, жирной, острой, чрезмерно соленой и жареной пищи.

Кровь сдается натощак, пациенту рекомендуется сохранять физический и эмоциональный покой (воздержаться от резких движений, подъема по лестнице, исключить стрессовые ситуации) в течение получаса перед исследованием.

Также исследование тромбоцитов не рекомендуется сразу после выздоровления от продолжительной болезни, что может исказить результаты ввиду ослабленного иммунитета.

Подробная инструкция по подготовке к общему анализу крови здесь.

Нормы тромбоцитов

Важно! Нормы могут различаться в зависимости от реактивов и оборудования, используемого в каждой конкретной лаборатории. Именно поэтому при интерпретации результатов необходимо пользоваться стандартами, принятыми в той лаборатории, где сдавался анализ. Также необходимо обращать внимание на единицы измерения.

В списке представлены референсные значения тромбоцитарных клеток, принятые в лаборатории Инвитро2:

Возраст Концентрация тромбоцитов,
тыс./мкл (103 клеток/мкл)
Дети мальчики девочки
младше 2 нед. 218 — 419 144 — 449
2 нед. — 1 мес. 248 — 586 279 — 571
1 — 2мес. 229 — 562 331 — 597
2 — 6 244 — 529 247 — 580
6 месяцев — 2 года 206 — 445 214 — 459
2 года — 6 лет 202 — 403 189 — 394
Взрослые мужчины и женщины
старше 6 лет 150 — 400

 В лаборатории Хеликс несколько другая градация значений3:

Возраст Референсные значения
109/л
Меньше 10 дней 99 — 421
10 дней – 1 месяц 150 — 400
1-6 месяцев 180 — 400
6 месяцев – 1 год 160 — 390
1-5 лет 150 — 400
5-10 лет 180 — 450
10-15 лет 150 — 450
Больше 15 лет 150 — 400

Следует отметить, что количество тромбоцитов несколько снижается у женщин в менструальный период, но после прекращения кровотечения возвращается к норме. Также возможно незначительное снижение (до 150) концентрации тромбоцитов в гестационный период, что объясняется разведением крови за счет повышения ОЦК (объема циркулирующей крови) и при недостаточном питании будущей мамы.

Важно! Интерпретация результатов всегда проводится комплексно. Поставить точный диагноз на основании только одного анализа невозможно.

Препараты, влияющие на уровень тромбоцитов

Длительный прием данных препаратов может изменять уровень тромбоцитов4:

  • аспирин
  • болеутоляющие средства, такие как ибупрофен и напроксен
  • антигистаминные средства
  • лекарство от астмы
  • силденафил (Виагра)
  • препараты, используемые для профилактики образования тромбов, такие как клопидогрел
  • антибиотики
  • антидепрессанты и антипсихотические препараты
  • препараты для снижения уровня холестерина (статины)
  • блокаторы кальциевых каналов (верапамил).

Тромбоциты снижены (тромбоцитопения)

При снижении концентрации тромбоцитов в ОАК говорят о развитии тромбоцитопении, которая сопровождается расстройством свертываемости крови и склонностью к кровоточивости (кровоточат десны, часто возникают носовые либо кишечные кровотечения, менструации становятся длительными и обильными). Тромбоцитопения развивается при ряде серьезных заболеваний ввиду потери эластичности сосудистой стенки, их хрупкости и ломкости и риска возникновения внутренних кровотечений.

К причинам, провоцирующих понижение уровня тромбоцитов, относят:

  • гемолитико-уремический синдром или болезнь Гассера (сочетание гемолитической анемии, с тромбоцитопенией и острой недостаточностью почек);
  • тромбоцитопеническая пурпура или болезнь Верльгофа (один из вдов геморрагического диатеза);
  • аллергическая тромбоцитопения (прием ряда лекарств: прокаинамида, гепарина, ко-тримоксазола);
  • ДВС-синдром (вторая стадия);
  • тяжелые поражения печени (гепатит, цирроз);
  • алкоголизм;
  • малярия;
  • увеличение селезенки;
  • заболевания костного мозга, некоторые лейкозы;
  • мегалобластная анемия;
  • патология щитовидной железы (гипотиреоз, тиреотоксикоз).

Важно отметить, что понижение концентрации тромбоцитов (75 – 150) наблюдается у беременных, что не расценивается как патология5.

Тромбоциты повышены (тромбоцитоз)

Повышение содержания тромбоцитов (тромбоцитоз) наблюдается при6:

  • чрезмерном физическомм перенапряжении
  • хронических воспалительных процессах (ревматоидный артрит, туберкулез, саркоидоз);
  • миелопролиферативных заболеваниях (первичный эритроз, хронический миелолейкоз, миелофиброз, миелосклероз);
  • некоторых гемолитических анемиях;
  • гемолизе или сильной кровопотере;
  • карциноме, лимфоме;
  • после удаления селезенки.
Ссылка на основную публикацию
Adblock
detector