Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы.

Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы. Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы. Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы. Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы. Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы. Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы. Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы. Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы. Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы. Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы.

Расположение инспираторных (И) и экспираторных (Э) нейронов в продолговатом мозгу кошки Слева — дорсальная поверхность; справа — два поперечных среза {1, 2), на которых изображены области сосредоточения дыхательных нейронов, положение ядра одиночного пути (ЯОП) и двойного ядра (ДЯ). IX и Х — корешки языкоглоточного и блуждающего нервов; С 1 — корешок первого шейного спинномозгового нерва.

Проекция местоположения дыхательного центра на дорсальную поверхность продолговатого мозга. ДДГ и ВДГ — соответственно дорсальная и вентральная дыхательные группы; Бк — комплекс Бетцингера; р. ВДГ и к. ВДГ — ростральная и каудальная часть ВДГ; СI—СII — сегменты спинного мозга; ДН, НМ и ВМ — соответственно диафрагмальный нерв и нервы наружных и внутренних межреберных мышц.

Биоэлектрическая активность основных типом дыхательных нейронов течение трех нейронных фаз дыхательного цикла. 1 — ранние; 2 — полные; 3 — поздние инспираторные; 4 — постинспираторные; 5 – экспираторные; 6 преинспираторные нейроны.

Соотношение фаз дыхательного цикла и фаз активности нейронов дыхательного центра. Площадь темных фигур соответствует степени биоэлектрической активности диафрагмального нерва и дыхательных мышц в различные фазы активности дыхательного центра.

Важнейшие звенья системы, регуляции дыхания 1 — центральный дыхательный механизм (показана проекция нейронов вентральной дыхательной группы на нижнюю поверхность продолговатого мозга), 2 — артериальные хеморецепторы (каротидный гломус), 3— бульбарные хемочувствительные зоны, 4 — легочные механорецепторы, 5 — легкие, 6 — диафрагма, 7 — межреберные мышцы.

Основные рецепторы легких • Ирритантные рецепторы слизистой оболочки дыхательных путей • Рецепторы растяжения гладких мышц дыхательных путей • Юкста капиллярные рецепторы межальвеолярного интерстиция

Схема нервной цепи, отвечающей за ритмогенез с обратной связью от рецепторов легких

Изменение дыхания при двусторонней ваготомии

Общая схема центральных и периферических факторов, влияющих на дыхание

Влияние гипоксии и гиперкапнии на дыхательный центр Рефлекторное влияние Рефлекторное и гуморальное влияние

Центральный дыхательный механизм входит в состав ретикулярной формации ствола мозга. Подавляющая масса дыхательных нейронов сосредоточена в двух группах ядер: дорсальной и вентральной. Большая часть нейронов дорсальной группы — инспираторные, бульбоспинальные.

Их аксоны направляются в шейные сегменты спинного мозга и образуют синапсы с мотонейронами ядра диафрагмального нерва. Эти нейроны непосредственно управляют сокращением диафрагмы. Ядра вентральной дыхательной группы содержат инспираторные и экспираторные нейроны.

Последние связаны преимущественно с мотонейронами межреберных и брюшных мышц, расположенными в грудных и поясничных сегментах спинного мозга, частично с мотонейронами диафрагмы, обеспечивая дыхательную активность указанных мышц.

Активность центрального дыхательного механизма, в свою очередь, управляется стимулами, исходящими от хеморецепторов и механорецепторов дыхательной системы.

Главная особенность работы этого механизма — линейное нарастание активности инспираторных нейронов на протяжении вдоха и резкий обрыв инспираторной активности, знаменующий окончание вдоха и переход к выдоху.

Полагают, что этот обрыв осуществляется благодаря тормозному влиянию со стороны особой группы нейронов, возбуждение которых происходит одновременно с инспираторными и усиливается под влиянием афферентной импульсации от рецепторов растяжения легких. Чем сильнее импульсация от хеморецепторов, тем круче нарастает инспираторная активность и быстрее развивается вдох, но так как при этом резче растягиваются легкие, то вдох быстрее сменяется выдохом. В итоге увеличивается и глубина, и частота дыхания.

Обнаружено, что полному расслаблению инспираторных мышц предшествует плавное снижение их активности, обусловленное, как полагают, включением особой группы нейронов, которые оказывают тормозящее ( «запирающее» ) влияние на инспираторную и экспираторную активность. Эту фазу назвали постинспираторной.

По—видимому, постинспираторная фаза обеспечивает интервалы, необходимые для опорожнения легких после очередного вдоха. Таким образом, центральный паттерн дыхания включает три фазы: инспираторную, постинспираторную и экспираторную. Нейроны, связанные с регуляцией дыхания, имеются и в мосту.

Здесь выделяют так называемый пневмотаксический центр, который участвует в переключении фаз дыхательного цикла; при разрушении этого центра вдохи становятся затянутыми, необычно глубокими. Центральный дыхательный механизм продолговатого мозга обладает автоматизмом, т. е. постоянной ритмической активностью.

Однако это его свойство у высших позвоночных полностью отлично от автоматии, свойственной, например, узлам проводящей системы сердца, возбуждение которых происходит в силу их внутренних свойств. Дыхательные нейроны функционируют нормально лишь при двух условиях.

Первым условием является сохранность связей между их различными группами (хотя пока не установлено, какие именно нейроны являются водителями ритма, пейсмекерами, и существуют ли среди них такие пейсмекеры вообще), вторым условием — наличие афферентной стимуляции. В этом плане важнейшую роль играет импульсация, поступающая от хеморецепторов.

Физиология дыхания

10.4.2. Хеморецепторы и хеморецепторные стимулы дыхания

Основной регулятор
активности центрального дыхательного механизма — афферентная сигнализация о
газовом составе внутренней среды организма.
Эта сигнализация исходит от
центральных (бульбарных) и периферических (артериальных) хеморецепторов (рис.
10.34).

Бульбарные
хемочувствительные зоны.
На вентролатеральной поверхности продолговатого мозга расположены
нейрональные структуры, чувствительные к напряжению С02 и
концентрации ионов H+ во внеклеточной жидкости мозга. Локальное воздействие
этих факторов вызывает увеличение дыхательного объема и легочной вентиляции.

Напротив, снижение Pco2 и подщелачивание внеклеточной жидкости мозга, а также блокирование
холодом или разрушение этих структур ведет к полному или частичному исчезновению
реакции дыхания на избыток С02 (гиперкапнию) и ацидоз, а также к
резкому угнетению инспираторной активности вплоть до остановки дыхания.

Так как
морфофункциональная организация данных образований и их связи с центральным
дыхательным механизмом изучены недостаточно, существует сомнение в том,
являются ли они рецепторами в обычном смысле слова или служат своего рода
трансформаторами афферентных стимулов дыхания.

Поэтому термин бульбарные
хеморецепторы
следует понимать пока как условный.

Артериальные хеморецепторы.
В области бифуркации сонной артерии расположен так называемый сонный,
или каротидный, гломус (клубок, тельце).

Он обильно снабжается кровью и
содержит сложно устроенный рецепторный аппарат, реагирующий на изменения
газового состава артериальной крови: повышение напряжения СО2
(гиперкапнию), увеличение концентрации ионов Н+ (ацидоз) и меньше на
снижение напряжения О2 (гипоксемию).

Все три фактора, вызывая возбуждение каротидных
хеморецепторов, усиливают активность центрального дыхательного механизма.

Особенно важна чувствительность этих рецепторов к гипоксемии, ибо они являются
единственными в организме сигнализаторами о недостатке кислорода.

Афферентные
пути от каротидного гломуса идут через синусную ветвь (языкоглоточного нерва) и
достигают дорсальной дыхательной группы нейронов продолговатого мозга.

Аналогичные хеморецепторы имеются в очень мелких гломусных
тельцах находящихся в различных участках стенки дуги аорты, а также у некоторых
животных (крысы) в брюшной полости (рис. 10.35). Значение их в регуляции
дыхания, однако, невелико; по—видимому, они играют роль резервных механизмов.

Хеморецепторные стимулы дыхания. Установлено, что нейроны
центрального дыхательного механизма прямой чувствительностью к химизму среды не
обладают, а их активность определяется главным образом импульсами от
хеморецепторов, прежде всего бульбарных. Главным стимулом, управляющим
дыханием, служит гиперкапнический:

чем выше напряжение СО2  (а с этим параметром связана и концентрация
ионов Н+) в артериальной крови и внеклеточной жидкости мозга, тем
сильнее

Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы.
Рис. 10.34 Важнейшие звенья системы, регуляции дыхания 1 — центральный дыхательный механизм (показана проекция нейронов вентральной дыхательной группы на нижнюю поверхность продолговатого мозга), 2 — артериальные хеморецепторы (каротидный гломус), 3— бульбарные хемочувствительные зоны, 4 — легочные механорецепторы, 5 — легкие, 6 — диафрагма, 7 — межреберные мышцы.
Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы.
Рис. 10.35 Расположение хеморецепторов каротидных и аортальных е телец, барорецепторов каротидных синусов и дуги аорты собаки (А), а также расположение участка каротидного тельца крысы (Б)
Рефлекторная регуляция дыхания. Хеморецепторы. Хеморецепторный контроль дыхания. Центральный хеморефлекс. Периферические ( артериальные ) хеморецепторы.
Рис. 10.36 Зависимость легочной вентиляции от хеморецепторных стимулов: гиперкапнического (А) и гипоксического в условиях стабилизации гиперкапнического стимула (Б)
Читайте также:  Анестезин присыпка, раствор, мазь, крем, гель и в таблетках, формы выпуска, инструкция по применению

возбуждение бульбарных
хемочувствительных структур и артериальных хеморецепторов и тем выше вентиляция.
Так, если человек (или животное) дышит из того же мешка, куда выдыхает (возвратное
дыхание),
то по мере роста Рсо2 в дыхательной среде
увеличивается легочная вентиляция (рис. 10.36).

Напротив, если усиленно
провентилировать легкие животного, резко снизив таким образом артериальное Рсо2
т. е. вызвав гипокапнию, дыхательные движения прекращаются, пока в крови не
восстановится нормальный уровень напряжения С02.

У бодрствующего
человека такое постгипервентиляционное апноэ обычно не наступает (объяснение
этому факту будет дано ниже).

Меньшее значение в регуляции дыхания
имеет гипоксический стимул. Его выключение с помощью дыхания кислородом
либо денервации каротидных клубочков лишь немного (и то не всегда) снижает
легочную вентиляцию.

Во время дыхания газовыми смесями с пониженным содержанием
О2 благодаря росту активности артериальных хеморецепторов
вентиляция нарастает, однако зависимость ее от Ро2 нелинейна
(рис. 10.36).

Эта особенность связана с тем, что в соответствии с формой кривой
диссоциации оксигемоглобина крутое падение содержания О2 в крови
наступает лишь тогда, когда Роз опускается ниже 80—70 мм рт. ст. — в этот
момент и происходит значительный подъем легочной вентиляции.

Особенно сильным
стимулом для центрального дыхательного механизма является сочетание
гиперкапнии с гипоксемией
(и связанным с ней ацидозом), и это вполне
естественно: интенсификация окислительных процессов в организме сопряжена не
только с увеличением поглощения из крови 02, но и с обогащением ее
С02 и кислыми продуктами обмена. Эти сдвиги требуют увеличения
объема вентиляции легких.

Функция центральных и артериальных
хеморецепторов заключается в поддержании газового и кислотно—основного
гомеостаза организма и прежде всего наиболее требовательной к постоянству
химизма среды ткани мозга. Недаром рецепторы каротидного тела контролируют
химизм крови, снабжающей головной мозг, а бульбарные хемочувствительные
структуры — химизм внеклеточной жидкости самого мозга.

Хеморецепторный контроль дыхания. Центральные и периферические хеморецепторы: локализация, адекватные раздражители

Хеморецепторный контроль дыхания (ХКД) осуществляется при участии:

Центральных хеморецепторов расположены в ростральных отделах вентральной дыхательной группы, в структурах голубого пятна., в реткикулярных ядрах шва ствола мозга. Реагируют на водородные ионы в окружающей их межклеточной жидкости мозга. Центральные хем.

— нейроны, которые являются рецепторами СО2, т. к. величина рН обусловлена Парц.Р СО2, а также тем, что концентрация ионов водорода в межклеточной жидкости мозга зависит от Парц.Р СО2 в артериальной крови. Увеличение вентиляции легких при стимуляции центральных хем.

Ионами водорода — Центральным хеморефлексом,оказывающий выраженное влияние на дыхание. Центральные хем. Медленно реагируют на изменение СО2 в артериальной крови, что обусловлено их локализацией в ткани мозга. Центральные хем.

Стимулируют линейное увеличение вентиляции легких при увеличении СО2 в артериальной крови выше порогового = 40 мм.рт.ст.

-Периферические хеморецепторы —расположены в каротидных тельцах в области бифуркации общих сонных артерий и в аортальных тельцах в области дуги аорты. ПХ реагируют на изменение концентрации водородных ионов, Парц.Р О2 в артериальной крови.

При гипоксии ПХ активируются под влиянием увеличения концентрации в артериальной крови, прежде всего ионов водорода и РСО2. Действие на ПХ этих раздражителей усиливается по мере снижения в крови РО2.

Гипоксия увеличивает чувствительность ПХ к [H+] и СО2 — асфиксия и возникает при прекращении вентиляции легких.

Импульсы от ПХ по волокнам синокаротидного нерва и аортальной ветви блуждающего нерва достигаю чувствительных нейронов ядра одиночного тракта продолговатого мозга=> переключаются на нейроны дыхательного центра. Его возбуждение приводит к росту вентиляции легких.

144.Механорецепторный контроль дыхания. Механорецепторы легких: виды, адекватные раздражители. . Роль проприоцепторов дыхательных и недыхательных мышц в регуляции дыхания.

МКД осуществляется рефлексами, которые возникают при раздражении механорецепторов дыхательных путей легких.

В тканях этих путей расположено 2 основных типа механорецепторов, импульсы от которых поступают к нейронам дыхательного центра:

-Быстро адаптирующиеся рецепторы (БР) —нах. В эпителии или субэпителиальном слое, начиная от верхних дыхательных путей до альвеол.

  • -БР инициируют такие рефлексы, как нюхательный.
  • -Они возбуждаются при попадании на слизистую оболочки трахеи и бронхов раздражителей (пыль, слизь, табачный дым)
  • -В зависимости от местоположения ирритантных рецепторов в дыхательных путях возникают специфические рефлекторные реакции дыхания.

-Раздражение рецепторов слизистой оболочки носовой полости при участии тройничного нерва вызывает рефлекс чиханья. Рецепторов слизистой оболочки от трахеи до бронхиол — блуждающий нерв. Рецепторов слизистой оболочки гортани и трахеи — через волокна блуждающего нерва — Рефлекс чиханья.

-Медленно адаптирующиеся рецепторы растяжения легких.Нах. В гладких мышцах дыхательных путей бронхиального дерева и раздражаются в результате увеличения объема легких.

Рецепторы связаны с нейронами дорсальной дыхательной группы дыхательного центра миелинизированными афферентными волокнами блуждающего нерва. Стимуляция этих рецепторов вызывает рефлекс Геринга-Брейера.

У человека в состоянии бодрствования этот рефлекторный эффект возникает при величине дыхательного объема, которая превышает в 3 раза его нормальную величину при спокойном дыхании.

-Легочные J-рецепторы.Нах. В пределах стенок альвеол в месте их контакта с капиллярами и способны реагировать на стимулы со стороны легких и легочного кровообращения. Рецепторы связаны с дыхательным центром немиелинизированными афферентными С-волокнами.

Рецепторы повышаю активность при увеличении в плазме крови концентрации ионов водорода, при сдавливании легочной ткани. Наибольшую активность имеют во время физической активности большой мощности и при подъеме на большую высоту.

Возникающее при этом раздражение рецепторов вызывает частое, поверхностное дыхание, одышку.

-Проприорецепторы.Дыхательный центр непрерывно получает афферентные входы от прориорецепторов мышц (мышечные веретена и сухожильные рецепторы Гольджи) по восходящим спинальным трактам.

Эти афферентные входы являются как неспецифическими (рецепторы расположены в мышцах и суставах конечностей), так и специфическими (рецепторы расположены в дыхательных мышцах).

Импульсация от проприорецепторов распространяется преимущественно к спинальным центрам дыхательных мышц, а также к центрам головного мозга, контролирующим тонус скелетной мускулатуры.

Активация проприорецепторов в момент начала физической нагрузки является основной причиной увеличения активности дыхательного центра и повышения вентиляции легких. Проприорецепторы межреберных мышц и диафрагмы рефлекторно регулируют ритмическую активность дыхательного центра продолговатого мозга в зависимости от положения грудной клетки в различные фазы дыхательного цикла, а на сегментарном уровне — тонус и силу сокращения дыхательных мышц.

Проприоцептивный контроль дыхания. Рецепторы суставов груд­ной клетки посылают импульсы в кору больших полушарий и являются единственным источником информации о движениях груд­ной клетки и дыхательных объемах.

Межреберные мышцы, в меньшей степени диафрагма, содержат большое количество мышечных веретен. Активность этих рецепторов проявляется при пассивном растяжении мышц, изометрическом со­кращении и изолированном сокращении интрафузальных мышечных волокон.

Рецепторы посылают сигналы в соответствующие сегменты спинного мозга.

Недостаточное укорочение инспираторных или экс­пираторных мышц усиливает импульсацию от мышечных веретен, которые через γ-мотонейроны повышают активность α-мотонейронов и дозируют таким образом мышечное усилие.

Механизм дыхательного акта. Дыхательный центр. Рефлекс Геринга-Брейера. Влияние рО2, рСО2, рН на дыхание

Подробности

Нервная система обычно устанавливает такую скорость альвеолярной вентиляции, которая почти точно соответствует потребностям тела, поэтому напряжение кислорода (Ро2) и двуокиси углерода (Рсо2) в артериальной крови мало изменяется даже при тяжелой физической нагрузке и при большинстве других случаев респираторного стресса. В этой статье изложена функция нейрогенной системы регуляции дыхания.

Анатомия дыхательного центра

Дыхательный центр состоит из нескольких групп нейронов, расположенных в стволе мозга по обе стороны продолговатого мозга и моста. Их делят на три большие группы нейронов:

  1. дорсальная группа дыхательных нейронов, расположенная в дорсальной части продолговатого мозга, которая в основном вызывает вдох;
  2. вентральная группа дыхательных нейронов, которая расположена в вентролатеральной части продолговатого мозга и в основном вызывает выдох;
  3. пневмотаксический центр, который расположен дорсально в верхней части моста и контролирует в основном скорость и глубину дыхания. Наиболее важную роль в контроле дыхания выполняет дорсальная группа нейронов, поэтому первой будем рассматривать ее функции.
Читайте также:  Компрессионные синдромы остеохондроза шейного отдела.

Дорсальная группа дыхательных нейронов простирается на большую часть длины продолговатого мозга. Большинство этих нейронов расположено в ядре одиночного тракта, хотя расположенные в близлежащей ретикулярной формации продолговатого мозга дополнительные нейроны также имеют важное значение для регуляции дыхания.

Ядро одиночного тракта является сенсорным ядром для блуждающего и языкоглоточного нервов, которые передают в дыхательный центр сенсорные сигналы от:

  1. периферических хеморецепторов;
  2. барорецепторов;
  3. разного типа рецепторов легких.

Генерация дыхательных импульсов. Ритм дыхания

Ритмические инспираторные разряды от дорсальной группы нейронов

Базовый ритм дыхания генерируется в основном дорсальной группой дыхательных нейронов.

Даже после перерезки всех входящих в продолговатый мозг периферических нервов и ствола мозга ниже и выше продолговатого мозга эта группа нейронов продолжает генерировать повторяющиеся залпы потенциалов действия инспираторных нейронов. Основная причина возникновения этих залпов неизвестна.

Через некоторое время схема активации повторяется, и так продолжается в течение всей жизни животного, поэтому большинство физиологов, занимающихся физиологией дыхания, полагают, что у человека тоже имеется подобная сеть нейронов, расположенная в пределах продолговатого мозга; возможно, что в нее входит не только дорсальная группа нейронов, но и прилегающие части продолговатого мозга, и что эта сеть нейронов отвечает за основной ритм дыхания.

Нарастающий сигнал вдоха

Сигнал от нейронов, который передается инспираторным мышцам, в основном диафрагме, не является мгновенным всплеском потенциалов действия. При нормальном дыхании он постепенно увеличивается в течение примерно 2 сек.

После этого он резко снижается примерно на 3 сек, что прекращает возбуждение диафрагмы и позволяет эластической тяге легких и грудной стенки выполнить выдох. Потом инспираторный сигнал начинается опять, и цикл повторяется снова, и в перерыве между ними происходит выдох. Таким образом, инспираторный сигнал является нарастающим сигналом.

По-видимому, такое нарастание сигнала обеспечивает постепенное увеличение объема легких во время вдоха вместо резкой инспирации.

Контролируются два момента нарастающего сигнала

  1. Скорость прироста нарастающего сигнала, поэтому во время затрудненного дыхания сигнал растет быстро и вызывает быстрое наполнение легких.

  2. Лимитирующая точка, при достижении которой сигнал внезапно пропадает. Это обычный способ контроля над скоростью дыхания; чем раньше прекращается нарастающий сигнал, тем меньше длительность вдоха.

    При этом сокращается и длительность выдоха, в результате дыхание учащается.

Рефлекторная регуляция дыхания

Рефлекторная регуляция дыхания осуществляется благодаря тому, что нейроны дыхательного центра имеют связи с многочисленными механорецепторами дыхательных путей и альвеол легких и рецепторов сосудистых рефлексогенных зон. В легких человека находятся следующие типы механорецепторов:

  1. ирритантные, или быстроадаптирующиеся, рецепторы слизистой оболочки дыхательных путей;
  2. рецепторырастяжения гладких мышц дыхательных путей;
  3. J-рецепторы.

Рефлексы со слизистой оболочки полости носа

Артериальные хеморецепторы

Хеморецепторы, стимулируемые увеличением напряжения двуокиси углерода и снижением напряжения кислорода, находятся в каротидных синусах и дуге аорты.

Они расположены в специальных маленьких тельцах, обильно снабжаемых артериальной кровью. Важными для регуляции дыхания являются каротидные хеморецепторы.

Аортальные хеморецепторы на дыхание влияют слабо и имеют большее значение для регуляции кровообращения.

Каротидные тельца расположены в развилке общей сонной артерии на внутреннюю и наружную. Масса каждого каротидного тельца всего около 2 мг. В нем содержатся относительно крупные эпителиоидные клетки I типа, окруженные мелкими интерстициальными клетками II типа.

С клетками I типа контактируют окончания афферентных волокон синусного нерва (нерва Геринга), который является ветвью языкоглоточного нерва. Какие структуры тельца — клетки I или II типа либо нервные волокна — являются собственно рецепторами, точно не установлено.

Хеморецепторы каротидных и аортальных телец являются уникальными рецепторными образованиями, на которые гипоксия оказывает стимулирующее влияние.

Афферентные сигналы в волокнах, отходящих от каротидных телец, можно зарегистрировать и при нормальном (100 мм рт. ст.) напряжении кислорода в артериальной крови.

При снижении напряжения кислорода от 80 до 20 мм рт. ст. частота импульсов увеличивается особенно значительно.

Кроме того, афферентные влияния каротидных телец усиливаются при повышении в артериальной крови напряжения двуокиси углерода и концентрации водородных ионов.

Стимулирующее действие гипоксии и гиперкапнии на данные хеморецепторы взаимно усиливается. Наоборот, в условиях гипероксии чувствительность хеморецепторов к двуокиси углерода резко снижается.

Хеморецепторы телец особенно чувствительны к колебаниям газового состава крови.

Степень их активации возрастает при колебаниях напряжения кислорода и двуокиси углерода в артериальной крови даже в зависимости от фаз вдоха и выдоха при глубоком и редком дыхании. Чувствительность хеморецепторов находится под нервным контролем.

Раздражение эфферентных парасимпатических волокон снижает чувствительность, а раздражение симпатических волокон повышает ее Хеморецепторы (особенно каротидных телец) информируют дыхательный центр о напряжении кислорода и двуокиси углерода в крови, направляющейся к мозгу.

Центральные хеморецепторы. После денервации каротидных и аортальных телец исключается усиление дыхания в ответ на гипоксию. В этих условиях гипоксия вызывает только снижение вентиляции легких, но зависимость деятельности дыхательного центра от напряжения двуокиси углерода сохраняется.

Она обусловлена функцией центральных хеморецепторов.

Центральные хеморецепторы были обнаружены в продолговатом мозге латеральнее пирамид. Перфузия этой области мозга раствором со сниженным рН резко усиливает дыхание.

Если рН раствора увеличить, то дыхание ослабевает (у животных с денервированными каротидными тельцами останавливается на выдохе, наступает апноэ). То же присходит при охлаждении или обработке местными анестетиками этой по верхности продолговатого мозга.

Хеморецепторы расположены в тонком слое мозгового вещества на глубине не более 0,2 мм. Обнаружены два рецептивных поля, обозначаемые буквам М и L. Между ними находится небольшое поле S. Оно нечувствительно к концентрации ионов Н+, но при его разрушении исчезают эффекты возбуждения полей М и L.

Вероятно, здесь проходят афферентные пути от сосудистых хеморецепторов к дыхательному центру. В обычных условиях рецепторы продолговатого мозга постоянно стимулируются ионами Н+, находящимися в спинномозговой жидкости. Концентрация Н+ в ней зависит от напряжения двуокиси углерода в артериальной крови, она увеличивается при гиперкапнии.

Центральные хеморецепторы оказывают более сильное влияние на деятельность дыхательного центра, чем периферические. Они существенно изменяют вентиляцию легких. Так, снижение рН спинномозговой жидкости на 0,01 сопровождается увеличением вентиляции легких на 4 л/мин.

Вместе с тем центральные хеморецепторы реагируют на изменение напряжения двуокиси углерода в артериальной крови позже (через 20—30 с ), чем периферические хеморецепторы (через 3—5 с). Указанная особенность обусловлена тем, что для диффузии стимулирующих факторов из крови в спинномозговую жидкость и далее в ткань мозга необходимо время.

Сигналы, поступающие от центральных и периферических хеморецепторов, являются необходимым условием периодической активности дыхательного центра и соответствия вентиляции легких газовому составу крови. Импульсы от центральных хеморецепторов усиливают возбуждение как инспираторных, так и экспираторных нейронов дыхательного центра продолговатого мозга.

Роль механорецепторов в регуляции дыхания Рефлексы Геринга и Брейера. Смене дыхательных фаз, т. е. периодической деятельности дыхательного центра, способствуют сигналы, поступающие от механорецепторов легких по афферентным волокнам блуждающих нервов.

После перерезки блуждающих нервов, выключающей эти импульсы, дыхание у животных становится более редким и глубоким. При вдохе инспираторная активность продолжает нарастать с прежнейскоростью до нового, более высокого уровня .

Значит афферентные сигналы, поступающие от легких, обеспечивают смену вдоха на выдох раньше, чем это делает дыхательный центр, лишенный обратной связи с легкими. После перерезки блуждающих нервов удлиняется и фаза выдоха.

Отсюда следует, что импульсы от рецепторов легких способствуют и смене выдоха вдохом, укорачивая фазу экспирации.

Геринг и Брейер (1868) сильные и постоянные дыхательные рефлексы обнаружили при изменениях объема легких. Увеличение объема легких вызывает три рефлекторных эффекта.

Во-первых, раздувание легких при вдохе может его преждевременно прекратить (инспираторно-тормозящий рефлекс).

Во-вторых, раздувание легких при выдохе задерживает наступление следующего вдоха, удлиняя фазу экспирации (экспираторно-облегчающий рефлекс).

В-третьих, достаточно сильное раздувание легких вызывает короткое (0,1—0,5 с) сильное возбуждение инспираторных мышц, возникает судорожный вдох -«вздох» (парадоксальный эффект Хэда).

Уменьшение объема легких обусловливает усиление инспираторной активности и укорочение выдоха, т. е. способствует наступлению следующего вдоха (рефлекс на спадение легких).

Таким образом, деятельность дыхательного центра зависит от изменений объема легких. Рефлексы Геринга и Брейера обеспечивают так называемую объемную обратную связь дыхательного центра с исполнительным аппаратом дыхательной системы.

Значение рефлексов Геринга и Брейера состоит в регулировании сортношения глубины и частоты дыхания в зависимости от состояния легких.

При сохраненных блуждающих нервах гиперпноэ, вызываемое гиперкапнией или гипоксией, проявляется увеличением как глубины, так и частоты дыхания.

После выключения блуждающих нервов учащения дыхания не происходит, вентиляция легких постепенно растет только вследствие увеличения глубины дыхания.

В результате максимальная величина вентиляции легких оказывается сниженной приблизительно вдвое. Таким образом, сигналы от рецепторов легких обеспечивают повышение частоты дыхания при гиперпноэ, наступающем при гиперкапнии и гипоксии.

У взрослого человека в отличие от животных значение рефлексов Геринга и Брейера в регуляции спокойного дыхания невелико.

Временная блокада блуждающих нервов местными анестетиками не сопровождается существенным изменением частоты и глубины дыхания.

Однако увеличение частоты дыхания при гиперпноэ у человека, как и животных, обеспечивается рефлексами Геринга и Брейера: это увеличение выключается блокадой блуждающих нервов.

Рефлексы Геринга и Брейера хорошо выражены у новорожденных. Эти рефлексы играют важную роль в укорочении дыхательных фаз, в особенности выдохов. Величина рефлексов Геринга и Брейера уменьшается в первые дни и недели после рождения.

В легких имеются многочисленные окончания афферентных нервных волокон. Известны три группы рецепторов легких: рецепторы растяжения легких, ирритантные рецепторы и юкстаальвеолярные рецепторы капилляров (j-рецепторы). Специализированные хеморецепторы для двуокиси углерода и кислорода отсутствуют.

Рецепторы растяжения легких. Возбуждение этих рецепторов возникает или усиливается при возрастании объема легких. Частота потенциалов действия в аффе рентных волокнах рецепторов растяжения увеличивается при вдохе и снижается при выдохе. Чем глубже вдох, тем больше частота импульсов, посылаемых рецепторами растяжения вдыхательный центр.

Рецепторы растяжения легких обладают разными порогами. Приблизительно половина рецепторов возбуждена и при выдохе, в некоторых из них редкие импульсы возникают даже при полном спадении легких, однако при вдохе частота импульсов в них резко увеличивается (низкопороговые рецепторы).

Другие рецепторы возбуждаются только при вдохе, когда объем легких увеличивается сверх функциональ ной остаточной емкости (высокопороговые рецепторы).

При длительном, на многие секунды, увеличении объема легких частота разрядов рецепторов убывает очень медленно (рецепторам свойственна медленная адаптация). Частота разрядов рецепторов растяжения легких уменьшается при увеличении содержания двуокиси углерода в про свете воздухоносных путей.

В каждом легком около 1000 рецепторов растяжения. Они расположены преимущественно в гладких мышцах стенок воздухоноеных путей — от трахеи до мелких бронхов. В альвеолах и плевре таких рецепторов нет.

Увеличение объема легких стимулирует рецепторы растяжения косвенно. Непосредственным их раздражителем является внутреннее напряжение стенки воздухоносных путей, зависящее от разности давлений по обе стороны их стенки.

С увеличением объема легких возрастает эластическая тяга легких. Стремящиеся спадаться альвеолы растягивают стенки бронхов в радиальном направлении.

Поэтому возбуждение рецепторов растяжения зависит не только от объема легких, но и от эластических свойств легочной ткани, от ее растяжимости.

Возбуждение рецепторов внелегочных воздухоносных путей (трахеи и крупных бронхов), находящихся в грудной полости, определяется в основном отрицательным давлением в плевральной полости, хотя и зависит также от степени сокращения гладкой мускулатуры их стенок.

Раздражение рецепторов растяжения легких вызывает инспираторно-тормозящии рефлекс Геринга и Брейера.

Большая часть афферентных волокон от рецепторов растяжения легких направляется в дорсальное дыхательное ядро продолговатого мозга, активность инспираторных нейронов которого изменяется неодинаково. Около 60% инспираторных нейронов в этих условиях тормозится.

Они ведут себя в соответствии с проявлением инспираторно-тормозящего рефлекса Геринга и Брейера. Такие нейроны обозначаются как Iб. Остальные инспираторные нейроны при раздражении рецепторов растяжения, наоборот, возбуждаются (нейроны Iв).

Вероятно, нейроны Iв представляют собой промежуточную инстанцию, через которую осуществляется торможение нейронов Iб и инспираторной активности в целом. Предполагают, что они входят в состав механизма выключения вдоха.

Изменения дыхания зависят от частоты раздражения афферентных волокон рецепторов растяжения легких. Инспираторно-тормозящии и экспираторно-облегчающий рефлексы возникают только при относительно высоких (более 60 в 1 с) частотах электростимуляции.

Электростимуляция этих волокон низкими частотами (20—40 в 1 с), наоборот, вызывает удлинение вдохов и укорочение выдохов. Вероятно, относительно редкие разряды рецепторов растяжения легких на выдохе способствуют наступлению следующего вдоха.

Ирритантные рецепторы и их влияние на дыхательный центр Названные так рецепторы располагаются преимущественно в эпителии и субэпителиальном слое всех воздухоносных путей. Особенно много их в области корней легких.

Ирритантные рецепторы обладают одновременно свойствами механо- и хеморецепторов.

Они раздражаются при достаточно сильных изменениях объема легких, причем как при увеличении, так и при уменьшении. Пороги возбуждения ирритантных рецепторов выше, чем у большинства рецепторов растяжения легких.

Импульсы в афферентных волокнах ирритантных рецепторов возникают только на короткое время в форме вспышек, во время изменения объема (проявление быстрой адаптации).

Поэтому иначе их называют быстро адаптирующимися механорецепторами легких. Часть ирритантных рецепторов возбуждается при обычных вдохах и выдохах.

Ирритантные рецепторы стимулируются также пылевыми частицами и накапливающейся в воздухоносных путях слизью.

Кроме того, раздражителями ирритантных рецепторов могут служить пары едких веществ (аммиак, эфир, двуокись серы, табачный дым), а также некоторые биологически активные вещества, образующиеся в стенках воздухоносных путей, в особенности гистамин.

Раздражению ирритантных рецепторов способствует снижение растяжимости легочной ткани. Сильное возбуждение ирритантных рецепторов происходит при ряде заболеваний (бронхиальная астма, отек легких, пневмоторакс, застой крови в малом круге кровообращения) и обусловливает .характерную одышку.

Раздражение ирритантных рецепторов вызывает у человека,.;неприятные ощущения типа першения и жжения.

При раздражении ирритантных рецепторов трахеи возникает кашель, а если раздражаются такие же рецепторы бронхов, усиливается инспираторная активность и укорачиваются выдохи за счет более раннего наступления следующего вдоха. В результате возрастает частота дыхания.

Ирритантные рецепторы участвуют также в формировании рефлекса на спадение легких, их импульсы вызывают рефлекторное сужение бронхов (бронхоконстрикция). Раздражение ирритантных рецепторов обусловливает фазное инспираторное возбуждение дыхательного центра в ответ на раздувание легких.

Значение этого рефлекса заключается в следующем. Спокойно дышащий человек периодически (в среднем 3 раза в час) глубоко вздыхает. Ко времени наступления такого «вздоха» нарушается равномерность вентиляции легких, снижается их растяжимость. Это способствует раздражению ирритантных рецепторов. На один из очередных вдохов наслаивается «вздох». Это ведет к расправлению легких и восстановлению равномерности их вентиляции.

Ссылка на основную публикацию
Adblock
detector