Автоматические системы идентификации бактерий. Системы Microscan. Системы Vitek. Методы идентификации нуклеиновых кислот. Гибридизация нуклеиновых кислот.

Впервые нуклеиновые кислоты пытались выделить в середине XIX века, когда ещё практически ничего не было известно об этих молекулах. Однако с момента открытия структуры и свойств ДНК технологии её выделения непрерывно модифицируются и совершенствуются. В данной статье рассматриваются самые распространенные и прогрессивные методики, используемые для экстракции нуклеиновых кислот.

Выделение фенол-хлороформом

Автоматические системы идентификации бактерий. Системы Microscan. Системы Vitek. Методы идентификации нуклеиновых кислот. Гибридизация нуклеиновых кислот. Рис.1. Схема протокола выделения фенол-хлороформным методом.

Первое упоминание об использовании этого метода встречается в статье 1967 года 1, и с тех пор эта технология является одним из самых распространённых способов выделения нуклеиновых кислот.

Суть методики заключается в смешивании клеточного лизата с фенолом, хлороформом и изоамиловым спиртом в пропорции 25:24:1 и последующем перемешивании и центрифугировании смеси.

После проведения этих манипуляций получается раствор с двумя фазами: водной и органической, причем все липиды и жиры находятся в органической (нижней) фазе, белки — на границе фаз, а нуклеиновые кислоты — в водной (верхней) фазе 2 (Рис.1). Для повышения чистоты экстракта эти действия повторяют несколько раз.

Если раствор будет иметь низкий pH, то ДНК перейдёт в органическую фазу, а РНК останется в водной фазе, что позволяет выделять РНК отдельно от ДНК.

Данный метод используется повсеместно, поскольку он не требует дополнительного сложного оборудования и имеет невысокую стоимость. Однако нуклеиновые кислоты, полученные таким образом, обладают невысоким качеством и зачастую требуют дополнительной очистки. Также эта технология имеет существенно меньший выход нуклеиновых кислот в сравнении с другими методиками.

Помимо качества экстракта, этот метод обладает ещё несколькими недостатками: он требует сложных манипуляций, которые могут привести к контаминации и потере образца, а сам процесс трудно автоматизировать. Также весь протокол занимает достаточно много времени 3. 

Выделение на спин-колонках

Автоматические системы идентификации бактерий. Системы Microscan. Системы Vitek. Методы идентификации нуклеиновых кислот. Гибридизация нуклеиновых кислот. 

Рис.2. Схема протокола выделения на спин-колонках.

Технология выделения на спин-колонках — это усовершенствованный метод экстракции на частичках силики, предложенный американскими учёными в 1979 году 4.

Они продемонстрировали, что в щелочных условиях и при повышенных концентрациях соли ДНК связывается с силикатами, и это позволяет отделить все остальные компоненты клетки от частиц силики со связанной ДНК.

Спин-колонки сконструированы таким образом, что при нанесении клеточного лизата на колонку и последующем центрифугировании ДНК остаётся на колонке, а всё лишнее проходит сквозь неё (Рис.2). Затем ДНК промывают несколько раз и элюируют в пробирку для сбора образца.

Преимущества такого метода заключаются в повышенной чистоте и хорошем качестве выделенных нуклеиновых кислот, высокой воспроизводимости и простоте по сравнению с выделением фенол-хлороформом. Однако также большое количество манипуляций может привести к контаминации, а выделение коротких фрагментов ДНК на спин-колонках может быть затруднено 5.

Экстракция на спин-колонках может занять от 20 минут в зависимости от биоматериала и сложности его лизиса. 

На рынке этот метод представлен большим разнообразием наборов от таких производителей, как Qiagen, Analytik Jena, NEB, ThermoFisher и других. Стоимость одного выделения здесь значительно выше, чем у предыдущего метода, поскольку на каждую реакцию необходима своя колонка, несколько пробирок для сбора фильтрата и элюата и, конечно, реагенты.

Выделение на магнитных частицах

 

Рис.3. Схема протокола выделения на магнитных частицах.

Спустя 20 лет после появления метода выделения на спин-колонках начинает набирать популярность более быстрый способ выделения на магнитных частицах 6.

Технология этого способа выделения основана на связывании нуклеиновой кислоты с веществом, покрывающим магнитные частицы (целлюлоза, сефадекс, сефакрил, dT-олигонуклеотиды, специфичные олигонуклеотиды и др.). К клеточному лизату добавляют такие магнитные частицы и перемешивают для связывания ДНК с ними.

После этого пробирку ставят в магнитный штатив или подносят к магниту, фиксируя таким образом твердую фазу. После отбора супернатанта нуклеиновые кислоты на частицах промывают и элюируют 7 (Рис.3).

Этот метод имеет те же преимущества, что и выделение на спин-колонках, но для экстракции на магнитных частицах не требуется сложное лабораторное оборудование (например, центрифуга).

Более того, процесс выделения на магнитных частицах легко автоматизировать, и многие автоматические станции выделения основаны именно на этой методике 3.

Однако здесь также присутствует риск контаминации и потерь образца.

Данный протокол выделения займет немного меньше времени благодаря отсутствию этапов центрифугирования, но количество манипуляций будет примерно таким же. Также стоимость одной реакции обычно выше, чем при выделении на колонках, а панели наборов предоставляют Qiagen, Analytik Jena,  ThermoFisher и другие.

Умное выделение (Smart Extraction)

Автоматические системы идентификации бактерий. Системы Microscan. Системы Vitek. Методы идентификации нуклеиновых кислот. Гибридизация нуклеиновых кислот. Рис.4. Схема протокола умного выделения. Протокол основан на принципе работы наборов для выделения компании Analytik Jena.

Методики выделения нуклеиновых кислот не перестают совершенствоваться: в 2005 году специалисты из компании Analytik Jena доказали, что для связывания нуклеиновых кислот с неорганической твёрдой фазой можно использовать не только хаотропные соли, но и смесь из хаотропных и нехаотропных солей с низкой ионной силой, эту технологию они назвали Dual Chemistry 8.

Позднее они усовершенствовали технологию Dual Chemistry при помощи немагнитных частиц с «умной» поверхностью 9. Для выделения используются специальные наконечники с этими частицами, которые надеваются на дозатор.

При заборе клеточного лизата в наконечник нуклеиновая кислота из раствора связывается с частицами, затем следуют этапы промывки и элюции, в результате чего получается очищенная нуклеиновая кислота высокого качества (Рис.

4).

Эта технология значительно ускоряет процесс выделения, а благодаря особенностям «умной» поверхности выход и качество нуклеиновых кислот значительно превосходит все предыдущие методы.

Данный способ экстракции очень легко автоматизировать, ведь носики со связывающими частицами подходят как для обычных лабораторных дозаторов, так и для различных автоматических станций выделения нуклеиновых кислот.

Ферментативное температурно-зависимое выделение

Автоматические системы идентификации бактерий. Системы Microscan. Системы Vitek. Методы идентификации нуклеиновых кислот. Гибридизация нуклеиновых кислот. 

Рис.5. Схема протокола ферментативного температурно-зависимого выделения. Протокол основан на принципе работы наборов для выделения компании MicroGEM. * — несмотря на невысокую степень очистки, образец отлично подходит для дальнейшего использования в ПЦР, секвенировании и STR.

Все вышеперечисленные методики имеют общую лимитирующую стадию — этап лизиса. Во всех технологиях используется SDS и протеиназа K для разрушения клеточных стенок и высвобождения нуклеиновых кислот.

SDS является ингибитором ПЦР, именно поэтому необходимы множественные стадии промывки, которые повышают риск контаминации и приводят к потерям образца.

Также более сложные для лизиса образцы могут требовать дополнительную долгую и трудозатратную пробоподготовку.

Специалисты из новозеландской компании MicroGEM (ранее известной как ZyGEM) ликвидировали проблемы, связанные с длительным и сложным лизисом и использованием вредных химикатов, благодаря применению очень эффективной термофильной протеиназы EA1 вместе с мезофильными гидролазами 10.

Процесс ферментативного температурно-зависимого выделения начинается со смешивания буфера и ферментов с образцом. При последующей инкубации при комнатной температуре гидролазы деградируют клеточные стенки.

После этого пробирку нагревают до 75°C, что активирует работу протеиназы EA1, которая разрушает все белки и высвобождает нуклеиновые кислоты. Последующее нагревание до 95°C дезактивирует EA1, и после этого образец готов для дальнейшего исследования (Рис.5).

Для особо загрязненных образцов вроде почвы или растений можно добавить этап очистки на колонке для избавления от ингибиторов.

Данная технология оптимальна для работы с малым количеством биоматериала, поскольку нет потерь нуклеиновых кислот. Также эту методику легко автоматизировать, она самая быстрая среди всех упомянутых способов выделения (от 7 минут) и включает меньше всего манипуляций. Стоимость одной реакции невысока, поскольку кроме реагентов не требуется никаких специальных расходных материалов.

Обзор подготовлен при поддержке компании SkyGen — официального дистрибьютора продукции Analytik Jena, MicroGEM, Qiagen, NEB и других производителей.

Источники

1. Rae, P. M. M., Barnett, T. R. & Babbitt, D. G. Factors influencing the yield of satellite DNA in extractions from Drosophila virilis and Drosophila melanogaster adults and embryos. BBA Sect. Nucleic Acids Protein Synth. (1976) doi:10.1016/0005-2787(76)90157-X.

2. Patrinos, G. P., Danielson, P. B. & Ansorge, W. J. Molecular Diagnostics: Past, Present, and Future. in Molecular Diagnostics: Third Edition (2016). doi:10.1016/B978-0-12-802971-8.00001-8.

3. Ali, N., Rampazzo, R. D. C. P., Costa, A. Di. T. & Krieger, M. A. Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics. BioMed Research International (2017) doi:10.1155/2017/9306564.

4. Vogelstein, B. & Gillespie, D. Preparative and analytical purification of DNA from agarose. Proc. Natl. Acad. Sci. U. S. A. (1979) doi:10.1073/pnas.76.2.615.

5. Green, M. R. & Sambrook, J. Molecular Cloning, 3-Volume Set : A Laboratory Manual. Cold Spring Harbour Laboratory Press (2012).

6. Trevor Hawkins. DNA PURIFICATION AND ISOLATION USNG MAGNETIC PARTICLES. United States Pat. (#5,705,628 ) 9, 2989–2997 (1998).

7. Tan, S. C. & Yiap, B. C. DNA, RNA, and protein extraction: The past and the present. Journal of Biomedicine and Biotechnology (2009) doi:10.1155/2009/574398.

Читайте также:  Синекод драже или таблетки 20 мг, капли, сироп - инструкция по применению, формы выпуска, аналоги и отзывы

8. http://www.dual-chemistry.com/

9. https://www.analytik-jena.com/products/kits-assays-reagents/extraction-technology/

10. https://microgembio.com/pdqex/

Методы выделения ДНК и РНК из биологического материала | ВМТ

Автоматические системы идентификации бактерий. Системы Microscan. Системы Vitek. Методы идентификации нуклеиновых кислот. Гибридизация нуклеиновых кислот.

Почему так важно получить высококачественную ДНК?

Так как в ветеринарной клинической практике наиболее используемым методом является ПЦР в реальном времени (или, в некоторых случаях, классическая ПЦР), рассмотрим методы выделения НК и их особенности будут рассмотрены именно с точки зрения данного вида анализа.

Механизм ПЦР

Как известно, ПЦР (полимеразная цепная реакция) представляет собой реакцию синтеза комплементарной цепочки ДНК на ДНК матрице, катализируемую ферментом ДНК-зависимой ДНК-полимеразой.

Фермент термостабильный – он может выдерживать высокие температуры, необходимые на этапе денатурации. Оптимум работы полимеразы составляет около 72°C.

Для создания оптимальных условий синтеза образец ДНК помещается в так называемую реакционную смесь (РС).

Реакционная смесь состоит:

  1. Буфер для ПЦР. Это буферный раствор с определенным значением pH и концентрацией различных солей и кофакторов, необходимых для работы полимеразы. В наше время компании-производители реактивов для ПЦР предлагают к своим полимеразам фирменные буферы.
  2. ДНК-зависимая ДНК-полимераза. Катализатор реакции, чаще всего выделяется из термофильной бактерии Thermus aquaticus (Taq-полимераза).
  3. Нуклеотидтрифосфаты (dNTPs). Раствор мононуклеотидтрифосфатов (dATP, dCTP, dTTP, dGTP) в свободном виде, которые служат «строительным материалом» для синтеза ампликонов.
  4. Праймеры. Короткие синтезированные последовательности ДНК (олигонуклеотиды), фланкирующие исследуемые участки ДНК – от них полимераза начинает свою работу.
  5. MQ вода. Дистиллированная и деионизированная вода, пригодная для молекулярно-генетических исследований. Используется для доведения реакционной смеси до рабочей концентрации.
  6. ДНК. Собственно, сам образец ДНК, который необходимо исследовать.

При должном качестве всех компонентов реакционной смеси реакция может ингибироваться только из-за плохой очистки ДНК. Ингибиторы ПЦР представляют собой вещества, способные повлиять на конформацию фермента и уменьшить его активность, вплоть до полной деактивации. Эти примеси могут оказаться в растворе ДНК по двум причинам:

  1.  Плохая очистка образца от остатков веществ, которые содержались в материале, из которого производилось выделение. Ингибировать ПЦР могут остатки жиров, белков, углеводов, пигментов (для растительных клеток – хлорофиллы, каратиноиды, антоцианы, для животных – гемоглобин и др.). Сюда же относятся и вещества, которые были использованы в качестве транспортной или консервационной среды для образца (ЭДТА, гепарин, формальдегид).
  2. Плохая очистка образца от реагентов, которые были использованы в процессе выделения. Сильно ингибируют ПЦР детергенты (ПАВ) и денатуранты, такие как SDS (додецилсульфат натрия) и мочевина; спирты и другие неполярные растворители, которые содержатся в экстрагентах и отмывочных буферах (этанол, изопропанол, фенол и др.).

Список некоторых веществ, которые могут негативно повлиять на эффективность ПЦР, показан в таблице 1.

Таблица 1. Некоторые ингибиторы процесса ПЦР

Ингибитор Концентрация ингибитора
SDS > 0.005%
Фенол > 0.2%
Этанол > 1%
Изопропанол > 1%
Ацетат натрия > 5 mМ
Хлористый натрий > 25 mМ
EDTA > 0.5 mМ
Гемоглобин > 1  мг/мл
Гепарин > 0.15 i.m/мл
Мочевина > 20 mМ
Агароза (при выделении ДНК из геля) > 1%
РНК > 0,5 мкг/20мкл
Реакционная смесь > 15%

Из этого можно сделать вывод, что ключевыми факторами успешного выделения НК является грамотная подготовка материала, правильный выбор метода экстракции и точное соблюдение требований протокола выделения.

Какие требования предъявляются к материалу для выделения нуклеиновых кислот?

Прежде всего, биологические образцы должны быть взяты в достаточном количестве для проведения анализа, кроме того, образца должно хватить для проведения повторного анализа. При этом необходимо учитывать вариации содержания НК в различных органах и тканях, а также уменьшение содержания НК из-за деградации, если образец был взят через большой промежуток времени после смерти животного.

Экстракцию нуклеиновых кислот следует начинать как можно скорее после отбора свежих тканей. Ткань может храниться в условиях низкой температуры в холодильнике в течение нескольких дней без риска деградации НК.

Однако, если выделение невозможно в ближайшее время, образец должен быть заморожен до температуры от -20°C до -80°C.

При этом целесообразно использовать для хранения и перевозки образцов одноразовую пластиковую пробирку или другие плотно закрывающиеся емкости.

После экстракции целесообразно проверить качество выделенной НК, например, измерить концентрацию с помощью флюориметра/спектрофотометра, провести гель-электрофорез или ПЦР со специальными праймерами – факторами элонгации.

Обзор методов выделения НК

Выделение нуклеиновых кислот – один из базовых методов молекулярной биологии. В прошлом процесс выделения и очистки НК был сложным, времязатратным, трудоемким и имел ограничения с точки зрения скорости обработки образцов.

На сегодняшний день имеется множество специализированных методик, которые могут использоваться для выделения нуклеиновых кислот с высокой степенью очистки. Их можно условно разделить на две группы: осаждение НК на суспензионный носитель и выделение на колонках.

Безусловно, традиционные методы выделения являются надежными и прошли испытание временем, но сейчас на рынке имеется широкий ассортимент товаров, включая полные наборы, содержащие большинство реагентов, необходимых для выделения нуклеиновых кислот.

Однако, большинство из них все же требует многократных этапов центрифугирования, которые сопровождаются удалением супернатанта (прим. фаза дисперсионной системы, которая располагается сверху от границы раздела фаз).В последний годы повысился спрос на автоматические системы.

Разработанные для средних и крупных лабораторий, они являются альтернативой трудоемкому ручному методу. Данная технология значительно повышает производительность лаборатории. При этом выход НК и чистота материала, воспроизводимость и прогностичность эксперимента будут максимальными (так же как скорость, точность и надежность анализа в целом), а риск кросс-контаминации (перекрестного заражения) минимизируется.

Фенол-хлороформная экстракция (Guanidinium Thiocyanate-Phenol-Chloroform Extraction)

Обычно протокол выделения нуклеиновых кислот включает следующие этапы: 1.) клеточный лизис, в результате которого разрушаются клеточные структуры и образуется лизат, 2.) инактивацию нуклеаз клетки, таких как ДНКаза и РНКаза, 3.) выделение искомой нуклеиновой кислоты из клеточного дербиса.

Экстракция с помощью смеси фенол-хлороформ – один из наиболее старых, но, тем не менее, широко используемых методов выделения нуклеиновых кислот.Несмотря на то, что фенол – легковоспламеняющееся, коррозионное и токсичное для человека вещество, он способен очень активно денатурировать белки, но не полностью инактивирует РНКазы.

Эту проблему можно решить, используя смесь фенол : хлороформ : изоамиловый спирт (в пропорции 25:24:1).При смешивании фенола и хлороформа образуется двухфазная эмульсия. После центрифугирования гидрофобный слой эмульсии, в котором собираются белки, липиды и углеводы, оседает на дно, а гидрофильный остается сверху.

Отбирается верхняя фаза, содержащая ДНК, после чего ДНК осаждают из супернатанта путем добавления этанола или изопропанола в соотношении 2:1 или 1:1 на фоне высокой концентрации солей в лизате.

Соли – обычные примеси в образцах нуклеиновых кислот, поэтому их всегда необходимо удалять из образца перед любыми последующими процессами и планируемыми анализами. Следовательно, для обессоливания образца, содержащего нуклеиновую кислоту, требуется одна или несколько стадий отмывки.

Осажденную ДНК выделяют путем повторного центрифугирования, причем избыток солей вымывается с помощью 70%-го этилового спирта, а центрифугирование необходимо для удаления супернатанта – этанола. Затем осажденную ДНК растворяют с помощью ТЕ-буфера или MQ-воды.

FTA-карты

В данной методике нуклеиновые кислоты выделяются прямо на специальной бумаге, пропитанной смесью реагентов, связывающих ДНК.

Для выделения достаточно нанести каплю образца на карту, после чего нанести на нее буфер для выделения и высушить. В дальнейшем, карту можно разрезать на фрагменты и загружать прямо в пробирку для ПЦР.

Данный метод подходит только для жидких образцов и не пригоден для ПЦР в реальном времени, однако по времени анализа ему нет равных.

С помощью коммерческих наборов (kits)

Для выделения НК возможно подготовить высококачественные образцы для анализа прямо «из коробки». По сравнению с традиционными методами они обеспечивают более быстрое и менее трудоемкое выделение. Многие затруднения, свойственные фенол-хлороформной экстракции, например, неполное разделение фаз, в данном случае исключены.

В процессе выделения твердая фаза системы (сорбент) адсорбирует на себя нуклеиновые кислоты в зависимости от pH и ионной силы буфера.

Процесс адсорбции основывается на следующих принципах: образование водородных связей с гидрофильной матрицей в хаотропных условиях, с последующим ионным обменом в жидкой среде с помощью анионообменника посредством отбора молекул по их афинности и размеру.

В большинстве случаев твердофазная экстракция осуществляется с использованием колонки для очистки ДНК (spin column), через которую проходит лизат под воздействием центробежной силы. По сравнению с традиционными способами очистки данный метод имеет преимущество в скорости работы. В качестве носителя используются силикатные носители (силика), стеклянные частицы, диатомит и анионообменные носители.

Протокол твердофазной экстракции включает четыре ключевых шага: клеточный лизис; адсорбцию нуклеиновых кислот, отмывку и десорбцию (элюцию). Исходным этапом является установка колонки для адсорбции образца.

Подготовка колонки производится с использованием буфера с определенным pH – для того, чтобы придать поверхностным структурам (или функциональным группам) сорбента необходимые свойства – только в таком случае ДНК или РНК будут «налипать» на носитель. Следующий шаг – образец, расщепленный с помощью лизирующего буфера, помещают на колонку.

Читайте также:  Остановка дыхания во сне. Апноэ во время сна.

Искомая нуклеиновая кислота адсорбируется на колонке за счет высокого pH и концентрации солей в связывающем растворе (binding solution). Прочие составляющие, такие как белки, также могут образовывать прочные специфические соединения с поверхностью колонки.

Эти нежелательные примеси можно удалить на стадии промывания, используя промывочный буфер (wash buffer), который содержит вещества, не дающие им адсорбироваться. Для того, чтобы высвободить нуклеиновую кислоту с колонки на стадии десорбции, используется ТЕ-буфер или MQ-вода.

Так называемые селективные носители (mixed-bed solid phases) представляют собой смесь по крайней мере двух различных сорбентов, которые могут быть твердыми или полутвердыми, пористыми или непористыми. Каждый из них способен связываться с целевой нуклеиновой кислотой при определенных условиях.

Силикатные носители (Силика, Silica Matrices)

Основой для большинства наборов для выделения и очистки нуклеиновых кислот, являются уникальные свойства силиконовых носителей для селективного связывания НК. К таким относятся стеклянные шарики и микроволокна, силикатные частицы, а также диатомовая земля (диатомит).

Сюда же можно отнести носители из гидроокиси кремния (hydrated silica matrix), которые изготовливают путем нагревания смеси из диоксида кремния и гидроксида натрия (либо гидроксида калия) в молярном соотношении от 2:1 до 10:1 в течение 48 часов. ДНК связывается с неорганическим носителем и высвобождается при элюции.

Принцип очистки нуклеиновых кислот с помощью силикатных носителей базируется на высокой афинности отрицательно заряженного остова ДНК к положительно заряженным силикатным частицам. Натрий играет роль катионного мостика, который притягивает отрицательно заряженный кислород в фосфатном «скелете» нуклеиновой кислоты.

В условиях высокой ионной силы (pH ≤ 7) катионы натрия разрушают водородные связи между водородом воды и отрицательно заряженными ионами кислорода в силикатном материале. В этих условиях ДНК тесно связывается с носителем, а интенсивное промывание позволяет удалить все нежелательные примеси.

Очищенные молекулы ДНК могут быть десорбированы позже, уже при низкой ионной силе раствора (pH ≥ 7), с использованием ТЕ-буфера или MQ-воды.Кроме силикатных носителей, связывать нуклеиновые кислоты способны также нитроцеллюлоза и полиамидные мембраны (polyamide membranes) (например, нейлоновые матрицы), однако они имеют меньшую специфичность.

Вышеперечисленные материалы используются в качестве транспортировочных и гибридизационных носителей для твердофазной экстракции НК. Полиамидные носители более долговечны, чем целлюлозные, и способны необратимо связывать нуклеиновые кислоты. Нуклеиновые кислоты могут быть иммобилизованы на полиамидных сорбентах при низкой ионной силе буферного раствора.

Стеклянные носители (Glass Particle)

Для очистки нуклеиновых кислот используются частицы стекла, стеклянный порошок и стеклянные шарики. Адсорбция нуклеиновых кислот на стеклянный субстрат базируется на тех же принципах, что адсорбционная хроматография.Очистка нуклеиновых кислот также может осуществляться на силикагеле и стеклянной суспензии в присутствии раствора хаотропных солей.

Диатомит

Диатомовая земля, известная также как кизельгур или диатомит, содержит до 94% кремния. Применяемая для фильтрации и в хроматографии, она подходит и для очистки плазмидной и ядерной ДНК. Впоследствии ДНК, связанная с диатомитом, вымывается с помощью спиртосодержащего буфера. Потом буфер сливается, а ДНК элюируется.

Очистка нуклеиновых кислот с использованием магнитных микроносителей (Magnetic Bead Based Nucleic Acid Purification)

Магнитная сепарация – современный, простой и эффективный способ очистки нуклеиновых кислот. Удобство данного метода заключается в том, что, намагниченные частицы могут быть удалены с помощью постоянного магнита.

К стенке пробирки прикладывают магнит, благодаря чему происходит агрегация частиц вблизи него, после чего оставшуюся часть образца выливают. То есть не требуется ни органических растворителей, ни многократного центрифугирования, вакуумной фильтрации или осаждения на колонках.

Часто для процесса выделения используют магнитные носители с иммобилизованными аффинными лигандами или носители, полученные из биополимера с аффинностью к целевой нуклеиновой кислоте.

К таким относятся магнитные частицы, полученные из различных синтетических полимеров, биополимеров, пористого стекла или на основе неорганических магнитных материалов (например, поверхностно-модифицированный оксид железа).

Для более эффективного связывания нуклеиновых кислот предпочтительно использовать материалы с большой суммарной площадью поверхности. Магнитные материалы в виде шариков (beads) более предпочтительны из-за их большей связывающей способности, так как НК буквально «оборачиваются» вокруг круглых частиц.

Существует метод выделения НК с помощью инкапсулированных в полимер магнитных частиц. Чаще всего для этих целей используют целлюлозу, а в качестве магнитного компонента – оксиды железа или никеля.

Особенность данного метода заключается в том, что нуклеиновые кислоты малого размера требуют более высоких концентраций солей для прочного связывания с модифицированными магнитными частицами.

Следовательно, концентрацию соли можно избирательно изменять, чтобы высвободить связанную нуклеиновую кислоту нужного размера.

Анионообменные смолы

Анионообменные смолы – класс носителей, в которых используется принцип анионного обмена. Он основан на взаимодействии между положительно заряженными группами диэтиламиноэтилцеллюлозы (DEAE) на поверхности смолы и отрицательно заряженными фосфатными группами ДНК-скелета. Анионообменная смола состоит из силикатных гранул с большим размером пор и гидрофильного поверхностного слоя.

Большая суммарная площадь поверхности смолы обеспечивает плотное соединение DEAE-групп с НК. Смола работает в широком диапазоне рН (рН=6-9) и/или концентрации солей (0,1-1,6 М).

Благодаря этому такие примеси, как белок и РНК вымываются из смолы с при использованием буферов со средней ионной силой, в то время как ДНК остается связанной с ней до этапа элюирования буфером с высокой ионной силой.

Подводя итог, можно заключить, что современный рынок материалов для выделения нуклеиновых кислот характеризуется большим разнообразием.

Все методики позволяют получать высококачественные образцы, пригодные для клинических исследований, однако следует учитывать условия работы лаборатории (вид анализов, количество образцов, цены на услуги лаборатории и т.д.

), и тогда практический и экономический эффект выбранного метода будет максимальным.

Гибридизация нуклеиновых кислот. Метод ДНК-зондов

Тема: Ветеринарная вирусология  

Молекулярная гибридизация имеет большое преимущество перед остальными системами идентификации, и прежде всего в тех случаях, когда по разным причинам изменено внешнее проявление диагностического признака, так как в генетическом материале очень редко происходят столь большие изменения, которые бы привели к ложноотрицательному результату.

Есть и другие доводы в пользу гибридизации:

  • с помощью зондов (зонд — определенный фрагмент ДНК, содержащего известный ген — генетический маркер) можно обнаружить микроорганизмы, которые трудно культивируются in vitro;
  • зонды позволяют отличить вирулентные штаммы от авирулентных in vitro;
  • быстрая идентификация микроорганизма непосредственно в биологическом материале от больных животных, пробах из окружающей среды и в фиксированных спиртом или формалином образцах после хранения;
  • нет необходимости направлять образцы для идентификации в специализированные лаборатории и институты;
  • высокая достоверность выявления единичных микробных клеток.

Принцип метода. Метод основан на специфическом взаимодействии (гибридизации) двух образцов ДНК: меченого ДНК-зонда и участка плазмидной или хромосомной ДНК (Г. Бантинг и др., 1990).

Образовавшиеся двухцепочечные ДНК отделяют от одноцепочечных и определяют присутствие метки. В качестве контроля используют ДНК известного штамма микроорганизма. Степень реассоциации таких гомологичных одноцепочечных ДНК принимают условно за 100 %.

При 60…100 % гомологии ДНК можно говорить о принадлежности сравниваемых бактерий к одному виду.

Проведение реакции. Разработаны два способа гибридизации: в растворе или с использованием нерастворимого носителя. Гибридизация на носителях применяется значительно шире: анализируемый образец связывается с нитроцеллюлозным или нейлоновым фильтром.

Для микробиологов больше подходит метод гибридизации in situ, позволяющий быстро проводить идентификацию бактерий.

Сначала исследуемые бактерии подращивают на фильтре, либо переносят на фильтр с агара, либо наносят на фильтр небольшие количества бактериальной взвеси. Затем клетки лизируют, высвободившуюся ДНК фиксируют прогреванием.

Следующий этап — проведение гибридизации на фильтре с внесенным меченым ДНК-зондом. После гибридизации фильтр несколько раз промывают специальными растворами и проводят детекцию метки.

Существует несколько разных методов мечения комплекса между зондом и ДНК-мишенью. Традиционным способом является радиоактивное мечение зонда с помощью введения в ДНК радиоактивных изотопов 33Р, 32Р, 35S. После гибридизации образцы-мишени выявляют с помощью радиоавтографии. Этот метод обладает высокой чувствительностью и позволяет обнаруживать около 1 пг ДНК.

Недостаток радиоактивных зондов — их нестабильность из-за непродолжительного времени жизни изотопов (32Р — 14,5 сут) и быстрого радиолиза зонда. Использование изотопов с более продолжительным периодом полураспада приводит к снижению чувствительности и удлиняет время, необходимое для радиоавтографии.

Кроме того, для работы с изотопами необходимы специально оснащенные лаборатории.

Наиболее широко используют нерадиоактивное мечение. Для нерадиохимической детекции применяют методы, основанные на присоединении к зондам остатков биотина (G. Gebeyehu et al., 1987).

Биотин (витамин Н), широко распространенный в природе и синтезируемый кишечными микроорганизмами, сам по себе меткой не является, но он обладает высоким сродством с авидином (стрептавидином). Авидин — глюкопротеид яичного белка, связывающий биотин с образованием нерастворимого комплекса биотин—авидин.

Читайте также:  Отдел Bryophyta. Печеночники. Мох. Ризоиды.

Используя биотинилированный фермент и зонд, несущий один или несколько остатков биотина, можно осуществить ферментативную детекцию связанного с мишенью зонда.

Авидин связывается с образовавшимся комплексом из двух гомологичных цепей ДНК и присоединяет биотинилированный фермент, который выявляют с помощью соответствующего окрашенного субстрата. Метод обладает более низкой чувствительностью, чем радиохимический. Повысить чувствительность можно, увеличив число остатков биотина, введенных в зонды.

Метод дот-гибридизации. В случаях, когда необходимо установить наличие или отсутствие в ДНК выявляемой последовательности, применяют метод дот-гибридизации. В этом случае очищенную денатурированную ДНК наносят непосредственно на фильтр, иммобилизуют, гибридизируют с зондом и регистрируют на автографах положительные сигналы.

В настоящее время используют зонды для обнаружения бактерий родов Salmonella, Campylobacter, Mycobacterium и др. Успешно разрабатываются зонды и для представителей рода Yersinia. Предложен зонд для идентификации вирулентных Yersinia enterocolitica (V. Е. Hill et al., 1983). В качестве зонда протестированы 8 перекрывающихся областей плазмиды вирулентности (pYV) Y.

enterocolitica, а также inv- и ail-области хромосомы, ответственные за способность к инвазии Y. enterocolitica (R. М. Rohins-Browne et al., 1989). Зонды на основе mv-гена Y. enterocolitica гибридизовались со всеми видами и биотипами иерсиний (но не других бактерий). Зонды из ail-области Y. enterocolitica давали положительный сигнал исключительно с патогенными Y.

enterocolitica.

Методы микробиологической диагностики

фикации отдельных видов бактерий. Он позволяет определить способность восстанавливать нитраты в нитриты. Способность к восстановлению NO3 в N02, определяют культивированием в МПБ, содержащем 1% раствор KNO3. Для определения нитритов в среду добавляют несколько капель реактива Грисса. При положительном результате наблюдают появление красного кольца.

Хроматография

Хроматографические методы используют для идентификации бактерий и установления их систематического положения. Объекты для исследования жирные кислоты клеточной стенки, уникальные интермедиаты и конечные метаболиты жизнедеятельности бактерий.

Хроматографические системы обычно сопрягают с компьютерами, что значительно упрощает учёт результатов. Наиболее распространена идентификация жирных короткоцепочечных и тейхоевых кислот методом газожидкостной хроматографии.

Жидкостной хроматографией под высоким давлением идентифицируют миколевую кислоту в клеточных стенках микобактерий. Тонкослойную хроматографию используют для идентификации изопреноидных хинонов клеточной стенки бактерий.

У различных родов их содержание и набор различны, но постоянны, что позволяет установить систематическое положение каждого конкретного вида.

Индикаторные бумажки

Для изучения биохимической активности бактерий широко применяют системы индикаторных бумажек или наборы мультимикротестов.

Система индикаторных бумажек (СИБ) набор дисков, пропитанных различными субстратами. Их можно непосредственно вносить в пробирки со взвесью бактерий либо предварительно поместить в лунки пластиковых планшетов, куда будут внесены исследуемые бактерии.

Так, на практике применяют наборы Minitek Enterobacteriaceaelll и Minitek Neisseria для дифференциальной диагностики энтеробактерий (четырнадцать субстратов) и нейссерий (четыре субстрата), позволяющие получить результаты через 4 ч инкубации при 37 С.

Наборы мультимикротестов пластиковые планшеты, в лунки которых помещены различные субстраты и индикаторы. В лунки вносят различные разведения бактерий и инкубируют при 37 °С. На практике используют тесты RapID NH для идентификации нейссерий и гемофилов, RapID Е для энтеробактерий и др., позволяющие получить результаты не позднее 4-8 ч.

Автоматические системы идентификации бактерий

Автоматические системы идентификации бактерий позволяют быстро (на 24-48 ч быстрее обычных методов) получить информацию о виде возбудителя заболевания и его чувствительности к антимикробным препаратам. В настоящее время наибольшее распространение получили системы типа Microscan и Vitek.

Системы Microscan. Используют турбидиметрические, колориметрические и флюоресцентные методы идентификации бактерий. Системы состоят из комплектов пластиковых планшетов, содержащих различные субстраты. Грамположительные и грамотрицательные бактерии дифференцируют с помощью флюоресцирующих субстратов (время анализа 2 ч).

Для идентификации гемофилов, анаэробов и дрожжей используют хромогенные субстраты, изменяющие свою окраску (время анализа 4-6 ч). Минимальные ингибирующие концентрации различных антибиотиков определяют по изменению оптической плотности. Система компьютеризирована и автоматически проводит все необходимые расчёты. Системы Vitek.

В этой системе применяют один тип планшетов с тридцатью лунками.В каждую лунку автоматически вносится суспензия бактерий с известной концентрацией микробных тел. Идентификация микроорганизмов (гемофилы, нейссерии, дрожжи и анаэробы) основана на турбидометрии реакционной среды в лунке.

В зависимости от свойств микроорганизма время, необходимое для его идентификации, варьирует от 4-8 до 18 ч. Система полностью компьютеризирована и работает автоматически.

Методы идентификации нуклеиновых кислот

Методы выявления РНК и ДНК возбудителей нашли применение в основном при диагностике вирусных инфекций. Тем не менее разработаны тест-системы для идентификации некоторых прихотливых бактерий (например, легионелл, хламидий), а также для идентификации колоний Neisseha gonorrhoeae, Haemophilus influenzae типа b, стрептококков группы В, энтерококков и микобактерий.

Гибридизация нуклеиновых кислот

Наиболее распространены методы гибридизации нуклеиновых кислот (рис. 1-17).

Принцип методов обусловлен способностью ДНК (и РНК) специфически соединяться (гибридизироваться) с комплементарными фрагментами искусственно созданных нитей ДНК (и РНК), меченных изотопами или ферментами (пероксидазой или щелочной фосфатазой). В дальнейшем образцы исследуют различными методами (например, ИФА).

Метод гибридизации в растворах даёт наиболее быстрые результаты (рис. 1-18, А). Широкому внедрению метода препятствует проблема удаления не связавшихся нитей нуклеиновых кислот.

Метод гибридизации на твёрдой основе (рис. 1-18, Б) и его сэндвич- модификация (рис. 1-18, В) распространён больше. В качестве твёрдой основы служат мембраны из нитроцеллюлозы или нейлона. Не связавшиеся реагенты удаляют многократным отмыванием.

ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ (ПЦР)

Основу метода ПЦР составляет катализируемое ДНК-полимеразой многократное образование копий определённого участка ДНК. Первоначально проводят отжиг термическое разделение двухнитевой молекулы ДНК на отдельные цепочки. Затем среду охлаждают и вносят праймеры (затравки), комплементарные нуклеотидным последовательностям обеих цепочек.

Для запуска реакции применяют синтетические праймеры олигонуклеотиды, состоящие из 10-20 нуклеоти-дов (например, дезоксинуклеотидтрифосфат), взаимодействующие с окончаниями последовательностей и образующие последовательности в 50-1000 оснований.

Затем в среду вносят термостабильную taq-полимеразу (по названию бактерии Thermus aquaticus), что запускает образование вторичных копий цепей ДНК, после чего образующиеся двухнитевые молекулы ДНК снова подогревают.

Образующиеся отдельные цепочки остужают, вносят праймеры и снова повторяют процедуру подогрева и охлаждения; поскольку tag-полимераза термостабильна, то необходимость в её повторном внесении отсутствует (рис. 1-19).

ПЦР позволяет получить большие количества изучаемого фрагмента ДНК даже в том случае, если в распоряжении исследователя имеется всего лишь одна исходная молекула геномной ДНК. Идентификацию копий ДНК проводят методом электрофореза. Метод ПЦР лежит также в основе ДНК-идентификации личности, установления родства людей, выявления генов наследственных болезней и пр.

Серологические методы

Классические серологические реакции применяют для выявления бактериальных AT, а также для выявления Аг, особенно для идентификации бактериальных Аг. Среди современных методов наибольшее распространение нашли методы твердофазного ИФА и латекс-агглютинации.

Аллергологические методы

Сенсибилизирующей активностью обладает ограниченное количество бактериальных Аг. Поэтому метод кожных проб применяют лишь при диагностике туберкулёза, сапа, мелиоидоза, бруцеллёза и туляремии.

Биологические методы

Выделение патогенных бактерий от заражённых животных имеет большую диагностическую ценность, особенно при контрольном применении иммунных сывороток. Цель подобных манипуляций уменьшение времени проведения бактериологических исследований.

  1. При диагностике инфекций, вызванных эффектами токсина (например, ботулизма или сибирской язвы), материал, предположительно содержащий возбудитель и токсин, помещают в физиологический раствор, а затем фильтруют через бумажные фильтры, натёртые тальком (последний хорошо адсорбирует токсин). Смывами с фильтров заражают чувствительных животных.
  2. При диагностике инфекций, обусловленных различными патогенными свойствами самого возбудителя, лабораторных животных заражают микробной взвесью.
  3. Для диагностики бактериальных инфекций используют различных животных, так как проявляют видовую восприимчивость к различным этиологическим агентам.
  • Мыши чувствительны к пневмококкам, нейссериям, пастереллам, клостридиям, листериям, возудителям сибирской язвы, туляремии, чумы, ботулизма, столбняка, коклюша и мелиоидоза
  • Крысы чувствительны к возбудителям туберкулёза (бычьего типа), мелиоидоза и др.
  • Морские свинки чувствительны к возбудителям туберкулёза (человеческого типа), дифтерии, сапа, чумы, бруцеллёза, туляремии, холеры, газовой гангрены, ботулизма, псевдотуберкулёза и др.
  • Кролики чувствительны к стафилококкам, стрептококкам, нейссериям, Mycobacterium bovis, возбудителям газовой гангрены, сибирской язвы, ботулизма, столбняка и др.

Кошки. Животных заражают стафилококками, возбудителями сапа, коклюша и др.

Обезьяны. Их заражают шигеллами, листериями, сальмонеллами, возбудителями мелиоидоза, коклюша и др.

Птицы. Кур и голубей используют для диагностики туберкулёза (птичьего типа), пастереллёза, риносклеромы и др.

МЕТОДЫ ОБНАРУЖЕНИЯ ВИРУСОВ

Лабораторные методы при диагностике вирусных инфекций включают:

  1. выделение и идентификацию возбудителя;
  2. обнаружение и определение титров противовирусных AT;
  3. обнаружение Аг вирусов в образцах исследуемого материала;
  4. микроскопическое исследование препаратов исследуемого материала.

Забор материала. При заборе материала для исследований необходимо выполнять следующие условия:

  1. образцы следует отбирать как можно раньше либо с учётом ритма циркуляции возбудителя;
  2. материал следует отбирать в объёме, достаточном для всего комплекса исследований;
  3. образцы следует доставлять в лабораторию незамедлительно (!), при относительно к
Ссылка на основную публикацию
Adblock
detector