Механизмы действия пептидных, белковых гормонов и катехоламинов. Лиганд.

Катехоламины представляют собой группу соединений, которые имеют структурное сходство с тирозином. К ним относятся нейротрансмиттеры и гормоны. По этой причине катехоламины чрезвычайно важны для внутренней регуляции функций организма и функционирования нервной системы.

Какие соединения относятся к катехоламинам? Какова их роль в организме человека?

Что такое катехоламины

Катехоламины, обнаруживаемые в организме человека, являются в основном нейротрансмиттерами, то есть веществами, ответственными за передачу информации между нервными клетками. 

Они имеют структуру моноаминов и образуются в организме из тирозина, который является одной из аминокислот. Катехоламины нельзя получить с пищей, организм должен синтезировать их самостоятельно из белков.

Наиболее важные вещества, относящиеся к катехоламинам:

  • адреналин;
  • норадреналин;
  • допамин.

Эти соединения в основном вырабатываются медуллярными клетками надпочечников и ганглиями симпатической нервной системы. Дофамин является активным нейромедиатором в центральной нервной системе и в значительной степени синтезируется в стволе мозга.

Катехоламины — водорастворимые химические соединения. Они могут транспортироваться с кровью в растворенном виде в плазме. Благодаря этому адреналин может проникать в различные органы организма, выполняя гормональную функцию.

Многие стимулирующие препараты являются аналогами катехоламинов. Например, в эту группу входят производные амфетамина.

Механизмы действия пептидных, белковых гормонов и катехоламинов. Лиганд.

Катехоламины — воздействие на организм

Уровень катехоламинов в организме повышается в стрессовых ситуациях. Эти вещества ответственны за запуск реакции «бей или беги». Под их влиянием, в ответ на стрессовые воздействия организм готовится к значительным физическим нагрузкам. Этот механизм развился у наших предков, которым приходилось охотиться и бороться за выживание.

Повышение концентрации катехоламинов может быть вызвано психологическими ситуациями или стрессовыми факторами окружающей среды, такими как усиление звука или интенсивное освещение.

Повышение уровня катехоламинов в организме вызывает:

  • повышение артериального давления;
  • увеличение сердечного ритма;
  • повышение уровня глюкозы в крови.

Катехоламины как нейротрансмиттеры

Норадреналин и дофамин — катехоламины, которые действуют в центральной нервной системе как нейротрансмиттеры. Это означает, что они являются химическими веществами, высвобождаемыми нейронами для передачи сигналов другим нервным клеткам.

Дофамин (допамин)

Дофамин активен в мозге, где он выполняет несколько различных функций. 

  • Одна из них — роль фактора, стимулирующего премиальный центр. Таким образом, дофамин участвует в механизме мотивации, который управляет нашим поведением. Многие вызывающие привыкание вещества активизируют выброс дофамина в мозг, стимулируя тем самым центр вознаграждения. Такие соединения включают некоторые лекарства. Этот механизм участвует в зависимости.
  • Другая роль допамина заключается в участии в передаче нервов, отвечающих за моторный контроль организма.

Во время болезни Паркинсона наблюдается снижение концентрации этого нейромедиатора в мозге. Эффект дефицита дофамина в этом расстройстве заключается в ригидности мышц и треморе.

На форумах в интернете допамин часто описывается как химическое вещество, ответственное за чувство удовольствия. Однако с научной точки зрения это вещество является прежде всего мотивационным. Это означает, что оно управляет поведением организма, что приближает его к достижению своей цели. Дофамин отвечает за приятное чувство удовлетворения от успеха.

Механизмы действия пептидных, белковых гормонов и катехоламинов. Лиганд.Дофамин

Норадреналин

Норадреналин является нейротрансмиттером, ответственным за мобилизацию мозга и тела для действия. Концентрация норадреналина снижается во время сна и повышается в стрессовых или опасных ситуациях. В последнем случае норадреналин работает в мозге, стимулируя и повышая настороженность. Положительно влияя на память и концентрацию, он в то же время отвечает за тревожные реакции.

Норадреналин в нервной системе также действует периферически, т. е. на все тело, а не только на мозг и психику. Его повышенная концентрация усиливает частоту сердечных сокращений, артериальное давление и стимулирует выброс глюкозы в кровоток.

Кроме норадреналин увеличивает приток крови к скелетным мышцам, одновременно уменьшая приток крови к пищеварительной системе.

Катехоламины как гормоны: адреналин

Адреналин играет в организме роль гормона. Это означает, что это соединение вырабатывается организмом, а затем выделяется в кровь. Гормоны, блуждая по кровотоку, попадают в разные ткани.

Адреналин, попадая в клетки организма, вызывает метаболические изменения. Это приводит к таким эффектам, как ускорение работы сердца, расширение зрачков и активный транспорт сахара в органы тела. Адреналин также стимулирует кровоток в мышцах. 

Механизм действия этого гормона основан на связывании его молекул с альфа- и бета-рецепторами на поверхности клеточных мембран.

Адреналин обычно вырабатывается как надпочечниками, так и небольшим количеством нейронов в продолговатом мозге. В нервной системе он также может действовать как нейротрансмиттер (как норадреналин и дофамин), участвуя в регуляции висцеральных функций. Он регулирует, среди прочего, дыхание.

Механизмы действия пептидных, белковых гормонов и катехоламинов. Лиганд.Нейромедиаторы

Катехоламины как лекарства

Из всех катехоламинов, напрямую в качестве лекарственного средства, используемого в медицине, присутствует только адреналин. Другие препараты содержат производные основных катехоламинов.

Адреналин

Он применяется главным образом в случаях остановки сердца, хотя есть и другие области, где без него сложно обойтись. 

Если адреналин используется в случаях анафилактического шока, остановки сердца и кардиогенного шока, то дает целый ряд эффектов:

  • стимулирует сократительную способность миокарда;
  • улучшает проводимость раздражителей в сердце;
  • повышает эффективность электрической дефибрилляции.

Адреналин иногда назначается, для подавления поверхностного кровотечения: он обладает способностью локально сужать кровеносные сосуды. Этот эффект может также использоваться при астме, когда другие методы лечения неэффективны.

Этот катехоламин вводится внутривенно, инъекцией в мышцы, ингаляцией или подкожным введением. Общие побочные эффекты, возникающие после приема адреналина, включают тремор, беспокойство и потоотделение. Также может возникнуть учащенное сердцебиение и высокое кровяное давление.

Леводопа

Структуру катехоламинов также имеет леводопа. Это вещество является предшественником дофамина. Лекарство используется для лечения болезни Паркинсона.

Терапевтический механизм этого катехоламина довольно интересен: преодолевая гематоэнцефалический барьер, он превращается в дофамин. Благодаря этому Леводопа увеличивает концентрацию этого нейротрансмиттера в черном веществе мозга, уменьшая симптомы заболевания.

Изопреналин

Изопреналин — другой препарат, который относится к катехоламинам. Это синтетическое производное адреналина, не встречающееся в организме в естественных условиях.

Это вещество используется для лечения брадикардии (замедления сердечного ритма), блокады сердца и редко в случаях астмы.

Распад катехоламинов в организме человека

Период полураспада катехоламинов в крови человека составляет всего несколько минут. За его расщепление ответственны процессы метилирования с использованием катехол-О-метилтрансфераз (СОМТ) или дезаминирования моноаминоксидазами (МАО).

В медицине используются препараты, основывающие свое терапевтическое действие на блокировании моноаминоксидаз (МАО). Группа этих веществ известна как ингибиторы МАО. Они используются в качестве лекарств, повышающих концентрацию нейротрансмиттеров в мозге у людей с депрессией.

Их второе применение заключается в повышении эффективности лечения болезни Паркинсона с использованием леводопы. Они блокируют распад этого лекарства в крови.

Механизмы действия пептидных, белковых гормонов и катехоламинов. Лиганд.Химическая формула нейромедиаторов

Причины высокого уровня катехоламинов в организме

В нашем организме, кроме моментов их повышенного высвобождения, связанных, например, со стрессом, уровень катехоламинов в крови остается низким. Постоянные высокие уровни катехоламинов могут быть связаны с наличием раковых заболеваний, относящихся к типам, которые увеличивают их выработку. Поэтому катехоламины могут служить онкомаркерами в диагностике опухолей.

Значительно повышенные уровни катехоламинов могут быть вызваны нейроэндокринными опухолями в мозговом веществе надпочечников. Увеличение концентрации этих веществ также наблюдается в случае других изменений:

  • феохромоцитома;
  • нейробластома;
  • ганглион (ганглионеврома).

Другой причиной высокого уровня катехоламинов может быть синдром Бруннера, который проявляется дефицитом моноаминоксидазы А (МАО-А). Это фермент, ответственный за расщепление катехоламинов в организме. Его недостаток значительно увеличивает количество нейротрансмиттеров в крови.

Источники

  • Адреналин (DB00668) – информация об активном веществе. (ang.). DrugBank.
  • Fitzgerald, P. A. (2011).”Глава 11. Медулла надпочечников и параганглии”. In Gardner, D. G.; Shoback, D. (eds.). Greenspan’s Базовая и клиническая эндокринология Гринспена (9-е изд.). New York: McGraw-Hill. Retrieved October 26, 2011.
  • Purves, D.; Augustine, G. J.; Fitzpatrick, D.; Hall, W. C.; LaMantia, A. S.; McNamara, J. O.; White, L. E., eds. (2008). Нейронаука (4-е изд.). Sinauer Associates. pp. 137–138. ISBN 978-0-87893-697-7.
  • «Катехоламины». Health Library. San Diego, CA: University of California..
  • Puglisi-Allegra S, Ventura R (June 2012). «Префронтальная / аккумальная катехоламиновая система обрабатывает высокую мотивационную значимость». Front. Behav. Neurosci. 6: 31
Читайте также:  Субъективное сенсорное восприятие. абсолютный порог ощущения. дифференциальный порог. порог различения. закон вебера. закон вебера—фехнера. шкала стивенса.

Механизмы действия пептидных, белковых гормонов и катехоламинов. Лиганд

Оглавление темы «Эндокринная система. Химическая природа и общие механизмы действия гормонов.»: 1. Эндокринная система. Химическая природа и общие механизмы действия гормонов. 2. Механизмы действия пептидных, белковых гормонов и катехоламинов. Лиганд. 3. Основные системы вторичных посредников. Система аденилатциклаза — цАМФ.

4. Система гуанилатциклаза-цГМФ. Система фосфолипаза С — инозитол-3-фосфат. 5. Система кальций—кальмодулин. Взаимосвязи вторичных посредников. 6. Механизм действия стероидных гормонов. Геномный механизм действия. 7. Негеномный механизм действия стероидных гормонов. 8.

Саморегуляция чувствительности эффектора к гормональному сигналу. Десенситизация ( снижение чувствительности ) клетки. 9. Регуляторные функции гормонов гипофиза. Аденогипофиз. Нейрогипофиз. 10. Кровоснабжение аденогипофиза и нейрогипофиза.

Молекулу гормона обычно называют первичным посредником регуляторного эффекта, или лигандом. Молекулы большинства гормонов связываются со специфическими для них рецепторами плазматических мембран клеток мишеней, образуя лиганд-рецепторный комплекс.

Для пептидных, белковых гормонов и катехоламинов его образование является основным начальным звеном механизма действия и приводит к активации мембранных ферментов и образованию различных вторичных посредников гормонального регуляторного эффекта, реализующих свое действие в цитоплазме, органоидах и ядре клетки.

Среди ферментов, активируемых лиганд-рецептор-ным комплексом, описаны: аденилатциклаза, гуанилатциклаза, фосфолипа-зы С, D и А2, тирозинкиназы, фосфаттирозинфосфатазы, фосфоинозитид-3-ОН-киназа, серинтреонин-киназа, синтаза N0 и др.

Вторичными посредниками, образующимися под влиянием этих мембранных ферментов, являются: 1) циклический аденозинмонофосфат (цАМФ); 2) циклический гуано зинмонофосфат (цГМФ); 3) инозитол-3-фосфат (ИФЗ); 4) диацилглицерол; 5) олиго (А) (2,5-олигоизоаденилат); 6) Са2+ {ионизированный кальций); 7) фосфатидная кислота; 8) циклическая аденозиндифосфатрибоза; 9) N0 (оксид азота). Многие гормоны, образуя лиганд-рецепторные комплексы, вызывают активацию одновременно нескольких мембранных ферментов и, соответственно, вторичных посредников.

Механизмы действия пептидных, белковых гормонов и катехоламинов. Лиганд.

Значительная часть гормонов и биологически активных веществ взаимодействуют с семейством рецепторов, связанных с G-белками плазматической мембраны (андреналин, норадреналин, аденозин, ангиотензин, эндотелии и др.).

— Также рекомендуем «Основные системы вторичных посредников. Система аденилатциклаза — цАМФ.»

Лекарственные средства на основе пептидов: применение, технологии получения — международный студенческий научный вестник (сетевое издание)

1

Бабина С.А. 1

Желтышева А.Ю. 1

Шуклин Г.О. 1

Шуклина А.А. 1

Япаров А.Э. 1
1 ФГБОУ ВО «Пермский государственный медицинский университет им. академика Е.А. Вагнера»
Пептиды являются универсальными биорегуляторами, контролирующими большинство биохимических процессов в любом живом организме.

Получение лекарственных препаратов на основе пептидов открыло новую эру в фармакологии, и медицине, а именно эру возможностей регулирования любого биохимического процесса в организме человека, путем синтеза аналогов естественных биопептидов и их введения в организм с лечебной или профилактической целью.

Лекарственные препараты на основе пептидов обладают высоко избирательным и эффективным действием, и в то же время они относительно безопасными и характеризуются хорошей переносимостью, что обуславливает повышенный интерес к их изучению и разработкам. Рынок пептидных препаратов сегодня переживает настоящий бум, связанный с появлением многочисленных пептидных лекарственных средств.

В настоящее время приблизительно 140 пептидных терапевтических средств оцениваются в клинических испытаниях. Учитывая, что самые простые механизмы воздействия пептидов уже используются, необходимо исследовать новые пути воздействия пептидов и возможности их применения.

Примерами таких подходов являются многофункциональные и проникающие в клетку пептиды, а также конъюгаты пептидных лекарственных средств. Индивидуализированный подход к лечению больных, который может быть обеспечен с помощью использования пептидных лекарственных средств в будущем может стать нормой для лечения каждого больного.

получение пептидных препаратов

1. Padhi, A. et al.

(2014) Antimicrobial peptides and proteins in mycobacterial therapy: Current status and future prospects. Tuberculosis 94, 363–73.
2. Buchwald, H. et al. (2014) Effects on GLP-1, PYY, and leptin by direct stimulation of terminal ileum and cecum in humans: implications for ileal transposition. Surg. Obes. Relat. Dis. http://dx.doi.org/10.1016/j.soard.2014.01.032.
3. Дедов, И.И. Новые возможности терапии сахарного диабета 2 типа /И. И. Дедов//.- Сахарный диабет.- 2009, спецвы-пуск.П С.1-3.
4. Giordano, C. et al. (2014) Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front. Neurol. 5, 63.
5. Анисимов В.Н., Хавинсон В.Х. Применение пептидных препаратов эпифиза (шишковидной железы) в онкологии: двадцатилетний опыт исследования эпиталамина // Вопр. онкол.—1993.—Т. 39.—С. 131– 142.
6. Kaspar, A.A. and Reichert, J.M. (2013) Future directions for peptide therapeutics development. Drug Discov. Today 18, 807–817.
7. Steidler, L. et al. (2009) Actobiotics as a novel method for cytokine delivery. Ann. N. Y. Acad. Sci. 1182, 135–145.
8. Robinson, S.D. et al. (2014) Diversity of conotoxin gene superfamilies in the venomous snail, Conus victoriae. PLoS ONE 9, e87648.
9. Transparency Market Research (2012) Peptide Therapeutics Market: Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2012–2018, Transparency Market Research.
10. Schulte, I. et al. (2005) Peptides in body fluids and tissues as markers of disease. Expert Rev. Mol. Diagn. 5, 145–157.
11. Delgado, C. et al. (1992) The uses and properties of PEG-linked proteins. Crit. Rev. Ther. Drug Carrier Syst. 9, 249–304.
12. Hamley, I.W. (2007) Peptide fibrillization. Angew. Chem. Int. Ed. Engl. 46, 8128–8147.
13. Riber, D. et al. (2013) A novel glucagon analogue, ZP-GA-1, displays increased chemical and physical stability in liquid formulation. Diabetes 62, A99–A172.
14. Timmerman, P. et al. (2009) Functional reconstruction of structurally complex epitopes using CLIPSTM technology. Open Vaccine J. 2, 56– 67.
15. Pocai, A. (2012) Unraveling oxyntomodulin, GLP1’s enigmatic brother. J. Endocrinol. 215, 335–346.
16. Larsen, B. et al. Zealand Pharma A/S. Pharmacologically active peptide conjugates having a reduced tendency towards enzymatic hydrolysis. US 6,528,486 B1, WO 99/46283.
17. Knudsen, L.B. (2010) Liraglutide: the therapeutic promise from animal models. Int. J. Clin. Pract. XX[LM2], (Suppl.) 4–11.

Цель исследования – изучение преимуществ и недостатков пептидных препаратов, их применения, путей введения, традиционных и новых возможностей в разработке пептидных препаратов.

Материалы и методы: Повествовательный обзор, основанный на поисках литературы в текстовой базе данных медицинских и биологических публикаций PubMed, а также в российской научной электронной библиотеке eLIBRARY до июня 2019 года без ограничений по срокам. Поиск включал такие термины, как «пептиды», «пептидная терапия», «пептидные технологии».

Введение

На сегодняшний день известно более 7000 встречающихся в природе пептидов, многие из которых выполняют важные функции в организме, включая действия в качестве гормонов, нейротрансмиттеров, факторов роста, лигандов ионных каналов или противоинфекционных средств [1].

Пептиды являются селективными сигнальными молекулами, которые связываются со специфическими поверхностными рецепторами клеток, такими как G-белок-связанные рецепторы (GPCR) или ионными каналами, запуская тем самым внутриклеточные реакции.

Учитывая их привлекательный фармакологический профиль и другие свойства, такие как безопасность, хорошая переносимость и эффективность, пептиды представляют собой оптимальную основу для разработки новых терапевтических средств.

Кроме того, получение пептидов связано с более низкой сложностью производства по сравнению с биофармацевтическими препаратами на основе белков и, следовательно, связанно с более низкими расходами.

Однако встречающиеся в природе пептиды часто не подходят для использования в качестве терапевтических средств, так как они имеют ряд недостатков, включая химическую и физическую нестабильность, а также короткий период полураспада в циркулирующей плазме крови. Некоторые из этих недостатков могут быть успешно устранены с помощью методов традиционной конструкции и ряда других разрабатываемых в настоящее время технологий. К таким технологиям относятся многофункциональные и проникающие в клетку пептиды, а также конъюгаты пептидных лекарственных [2,3].

Читайте также:  Кора большого мозга. Развитие коры большого мозга. Строение коры большого мозга.

Основная часть

Рынок пептидных препаратов

За последнее десятилетие пептиды нашли широкое применение в медицине и биотехнологии.

В настоящее время существует более 60 утвержденных управлением по контролю за продуктами и лекарствами США (FDA) пептидов на рынке, и эта цифра, как ожидается, значительно вырастет, так как приблизительно 140 пептидных препаратов в настоящее время уже проходят клинические испытания, а доклинические — более 500 [4].

Применение пептидов

Основными заболеваниями, при которых в настоящее время используются и активно изучаются пептидные препараты, являются метаболические и онкологические заболевания.

Заболевания из первой группы включают в себя ожирение и сахарный диабет 2 типа, характеризующиеся в последнее время эпидемическим ростом, заболевания второй группы характеризуются ростом смертности и необходимости замены химиотерапии, а также поддерживающей терапии.

Примером пептидных препаратов для лечения сахарного диабета 2 типа (СД2) является новый класс пептидов — агонистов глюкагоноподобного пептида-1 (GLP-1) [5].

Помимо перечисленных заболеваний в последнее время разрабатываются пептидные препараты для лечения редких заболеваний, например, тедуглутид — агонист рецептора GLP-2, используемый для лечения синдрома короткой кишки, а также пасиреотид — агонист соматостатиновых рецепторов, используемый для лечения синдрома Кушинга. Кроме того, рассматривается возможность применения пептидов при заболеваниях инфекционного и воспалительного характера, при этом несколько пептидов уже проходит клинические испытания [6].

Помимо применения пептидов в качестве лекарственных средств, возможно их использование в качестве биомаркеров с диагностической целью. Наконец, пептиды также нашли применение в качестве вакцин [7].

Пути введения пептидов в организм

В настоящее время большинство пептидных лекарств вводят парентеральным путем, тем не менее, разрабатываются альтернативные формы введения, включая пероральный, интраназальный, и трансдермальный пути, в соответствии с развитием технологий.

Одним из примеров альтернативных путей введения пептидов является препарат мидазол, с трансбукальным способом введения. В настоящее время разрабатываются системы трансбуккальной доставки, в которых используются гликонаночастицы золота [8].

Другие разрабатываемые системы могут обеспечить пероральную доставку пептидов, непосредственно экспрессируемых в желудочно-кишечном тракте.

  • Использование альтернативных форм введения может также обеспечить более широкое использование пептидной терапии при других состояниях, таких как воспаление, где местное введение пептидов может стать эффективным методом лечения [9].
  • Традиционные технологии конструирования пептидов
  • С целью избавления от таких недостатков применения природных пептидов как короткий период полувыведения и плохие физико-химические свойства, с которыми связана агрегация и плоха растворимость пептидов, используют ряд технологий

Вначале проводится определение аминокислотной структуры пептида и выявление в ней константных участков и участков возможной замены без изменения свойств.

Данный анализ возможно осуществить, например, с помощью аланиновых замен отдельных аминокислот с последующим изучением полученного пептида.

Важным в этом процессе, особенно когда необходимо получение жидких лекарственных форм, является определения химически лабильных аминокислот, подверженных таким процессам как изомеризация, гликозилирование или окисление, что является нежелательным [10].

В дальнейшем возможно ограничение ферментативного расщепления пептида путем идентификации возможных сайтов молекулярного расщепления с последующей заменой соответствующих аминокислот. Защита от ферментативного расщепления также может быть достигнута путем усиления вторичной структуры пептидов.

Этот подход включает в себя вставку зонда, определяющего новую структуру, вставку лактамных мостиков, сшивание или клипирование пептидных последовательностей, а также циклизацию пептидов.

Полиэтиленгликольилирование было использовано для ограничения глобулярной фильтрации и тем самым увеличения периода полувыведения пептидов из плазмы крови.

К другим способам стабилизации пептидов относится связывание их с циркулирующим белком альбумином, в качестве носителя, для продления периода полураспада, что приводит к появлению пептидных препаратов пролонгированного действия, которые можно вводить до одного раза в неделю [11].

С целью улучшения физико-химических свойств пептидов, в частности уменьшения агрегации, производят разрушение гидрофобных участков в структуре пептида, что может быть достигнуто с помощью замены или N-метилирования определенных аминокислот.

Для улучшения растворимости определенного пептидного препарата, изменяется распределение его зарядов, с помощью вставок или замены аминокислот что приводит к изменению изоэлектрической точки пептида и его стабилизации при рН желаемой рецептуры конечного продукта.

Физико-химические свойства пептидов также могут быть улучшены путем введения стабилизирующих структур, таких как α-спираль или лактамные мостики [12].

Считается что пептидные препараты второго поколения, оптимизированные для терапевтического использования с помощью перечисленных технологий, оказались более удобными для применения.

Дальнейшее развитие пептидной терапии связывают с быстрым появлением и дальнейшей миниатюризацией специальных устройств, насосов и систем обратной связи с сенсорами, и автоматизированным управлением, что позволило бы осуществить умную доставку пептидов [13].

Новые пептидные технологии

Существует огромное количество природных пептидов, некоторые из которых могут являться хорошей основой для создания новых пептидных препаратов.

Большой интерес на сегодняшний день представляют исследования обмена веществ в кишечнике, так как он богат разнообразными микроорганизмами, изучение которых может привести к идентификации новых пептидов из фрагментов микробных белков, продуктов распада или сигнальных молекул.

Продолжающиеся исследования микроорганизмов помогут значительно обогатить спектр имеющихся пептидных препаратов и тем самым повысить возможности для пептидной терапии в будущем [14].

Многофункциональные пептиды

Среди новых технологий в этой области — многофункциональные пептиды, имеющие более одного фармакологического действия, например, двойной или даже тройной агонизм. Применение данных препаратов дает возможность осуществления более индивидуализированного подхода к лечению пациентов.

Современные многофункциональные пептиды, находятся в стадии разработки, включая антимикробные пептидные препараты, которые имеют дополнительные биологические функции, такие как иммуностимуляция или заживление ран.

Двойные агонисты GLP 1-GCG обеспечивают большую потерю веса при избыточной массе тела пациентов с сахарным диабетом 2 типа по сравнению с чистым агонистом GLP-1, благодаря увеличению энергозатрат на основе GCG.

Эти примеры иллюстрируют, как добавление дополнительного действия к установленному, может обеспечить более индивидуализированный лечебным подходам с повышенной эффективностью.

Способы получения многофункциональных пептидов могут включать гибридизацию двух пептидов, связываемых вместе как модули либо напрямую, либо через линкер, либо с помощью образования химер, где вторая фармакологическая активность «спроектирована» для уже существующего пептидного остова [15].

Одной из проблем разработки многофункциональных пептидов является возможное несоответствие эффектов нового препарата, полученных in vitro и его воздействия in vivo, при этом в организме могут включится новые пути действия препарата, не связанные с запланированным эффектом.

Кроме того, перевод результатов исследований препаратов, полученных от животных моделей на человека, также является проблемой.

В целом сложность предсказывания эффектов многофункциональных пептидов в организме резко возрастает, что требует дальнейшего развития аналитического и экспериментального процесса в фармакологии.

Проникающие в клетку пептиды

Способы введения в организм лекарственных средств непрерывно совершенствуются.

Возникают новые, более тонкие иглы и приборы, осуществляющие парентеральное введение лекарственных средств, разрабатываются пероральные системы со сложным механизмом высвобождения лекарственных средств, все это направленно на повышение эффективности терапии в результате повышения биодоступности лекарств в области нахождения их мишени.

  1. Одной из важных проблем применения лекарственных средств на основе пептидов является плохая способность нативных пептидов переходить через клеточную мембрану, для воздействия на внутриклеточную мишень, что ранее ограничивало их терапевтическое применение.
  2. В последние годы были изобретены «проникающие в клетку пептиды», использование которых повышает вероятность связывания пептидов с их внутриклеточными мишенями, так как при применении обычных лекарственных средств только часть пептидного препарата достигает цели [16].
  3. Конъюгирование пептидов

К новым пептидным технологиям также можно отнести конъюгирование пептидов, например, с небольшими молекулами, олигорибонуклеотидами или антителами предоставляющее возможность для разработки новых пептидных терапевтических средств с улучшенной эффективностью и безопасностью.

Например, в онкологии этот подход вызвал большой интерес, в результате чего более 20 пептидных конъюгатов проходят клинические испытания.

Уже был продемонстрирован довольно удачный способ сопряжения пептидного агониста рецептора нейротензина 1 с радиоактивным лигандом для лечения рака поджелудочной железы, при этом первый компонент осуществляет прицельную доставку второго к органу мишени, создавая высокую местную концентрацию химиопрепарата в опухолевом очаге.

Данный метод может помочь устранить главную проблему применения химиотерапии, уменьшая системные побочные эффекты и повышая эффективность применения препарата. В конъюгатах пептид-антитело часть антитела может играть роль целевого объекта, тогда как пептид является эффекторной частью [17].

  • Заключение
  • Дальнейшая разработка пептидных препаратов будет основываться на встречающихся в природе пептидах с применением традиционных пептидных технологий для улучшения их слабых мест, таких как как их химические и физические свойства, а также короткий период полураспада.
  • Также ожидается, что новые пептидные технологии, в том числе многофункциональные пептиды, пептиды, проникающие в клетки, и конъюгаты пептидных лекарственных средств, помогут расширить сферу применения пептидов в качестве терапевтических средств.
  • Пептиды обладают огромным потенциалом в качестве будущих препаратов для успешного решения многих медицинских проблем.
Читайте также:  Репликация вирусов. Как размножаются вирусы?

Библиографическая ссылка

Бабина С.А., Желтышева А.Ю., Шуклин Г.О., Шуклина А.А., Япаров А.Э. ЛЕКАРСТВЕННЫЕ СРЕДСТВА НА ОСНОВЕ ПЕПТИДОВ: ПРИМЕНЕНИЕ, ТЕХНОЛОГИИ ПОЛУЧЕНИЯ // Международный студенческий научный вестник. – 2019. – № 3. ;
URL: https://eduherald.ru/ru/article/view?id=19681 (дата обращения: 06.04.2022). Механизмы действия пептидных, белковых гормонов и катехоламинов. Лиганд.

Научная электронная библиотека Монографии, изданные в издательстве Российской Академии Естествознания

Главным в механизме реализации всех физиологических функций катехоламинов в любой эффекторной клетке организма является их участие в регуляции энергетического обмена.

Известно, что одним из основных эффектов катехоламинов является их калоригенное действие, являющиеся следствием второго закона термодинамики, постулирующего направленность метаболизма и высвобождение свободной энергии. Калоригенный эффект катехоламинов сопровождается усилением потребления кислород тканями, что свидетельствует о стимуляции катехоламинами процесса биологического окисления и тканевого дыхания.

Экспериментально установлено, что внутривенная инфузия адреналина приводит вначале к повышению содержания глюкозы, свободных жирных кислот, молочной кислоты и только потом повышается потребление кислорода.

Калоригенное действие катехоламинов обусловлено усилением окисления свободных жирных кислот в сердце, интенсивным использованием липидов и углеводов в печени и в других органах (Mayer S.E., 1975).

Усиление калоригенного действия норадреналина, введенного животным адаптированных к холоду, связано с изменением функциональной активности скелетных мышц и бурого жира (Himms-Hagen J., et al., 1975).

Стимуляция норадреналином дыхания клеток бурого жира коррелирует с накоплением цАМФ и предотвращается бета-адреноблокадой (Opie L.H., 1979). При этом блокада бета-адренорецепторов снижает, как первичное, так «отставленное» теплообразование, снимает калоригенное действие норадреналина (Е.Я. Ткаченко, М.А. Якименко, 1974).

Реакция интактного сердца на адреналин проявляется очень быстро. Через 7 секунд увеличивается концентрация цАМФ и активируется фосфорилазкиназа. Через 10 секунд возрастает сила сердечных сокращений и происходит превращение фосфорилазы «В» в фосфорилазу «А» (Wastila W.B., et al., 1972).

Представляют интерес данные о способности адреналина и цАМФ ускорять созревание митохондрий печени плода и новорожденных животных, которое предотвращается бета-адреноблокадой (Sutton R., et al., 1980).

Вместе с тем, введение адреналина может привести к несоответствию степени потребления кислорода с содержанием макроэргов.

Норадреналин также снижает уровень АТФ, но слабее чем адреналин, уменьшая при этом соотношение АТФ/АДФ (Merouze P. еt al., 1975).

Катехоламины посредством аденилатциклазного механизма запускают биохимические биоэнергетические процессы, обеспечивающие их инотропное на сердце действие, которое обуславливается ковалентной модификацией тропонина, приводящей к возрастанию АТФ-азной активности головок миозина

Известно, что положительное ионами кальция (England P.J. et al., 1972; Stull J.T. et al., 1973) инотропное и хронотропное, и сосудосуживающее действие катехоламинов опосредовано через бета-адренорецепторы (Grundy H.C. et al., 1975) и предотвращается бета-адреноблокадой (Matejevic D. et al., 1979).

В литературе сложилось представление, что возрастание потребления кислорода вторично по отношению к инотропному и хронотропному на сердце действию катехоламинов, к гликогенолитическому в печени и липидмобилизирующему эффекту в жировой ткани. Вместе с тем, имеются наблюдения об одновременном увеличении минутного обьема и потребления кислорода стимулируемых адреналином состоянии (О.А. Вировец и др., 1967).

Токсические дозы катехоламинов, уровень которых может резко возрастать на первых этапах стресса, может привести к развитию аритмий, уменьшению эффективности механической работы, к повышению потребности в кислороде, гипоксии и развитию феномена «кислородной утечки» (М.Е. Райскина и др., 1963). При этом может иметь место смена прессорных состояний на депрессорные, предотвращаемые бета-адреноблокадой и введением кальция (Opie L.H. et al., 1979).

Нашими исследованиями (С.О. Тапбергенов, 1985) было обнаружено, что норадреналин, введенный животным в токсической дозе (0,5 мг/100 г) уже через 1–1,5 минуты вызвает резкое увеличение артериального давления с достижением максимума к 6–10 минуте.

Через 30–40 минут артериальное давление резко снижатся и достигает порядка 60–40 мм рт. столба.

Введение интактным животным норадреналина в субтоксических дозах (0,25 мг/100 г) в первые минуты приводит к увеличению числа сердечных сокращений, укорачивается время атриовентрикулярной проводимости, увеличивается время электрической систолы желудочков (интервал Q–T), укорачивается интервал R–R.

Через 24 часа после введения норадреналина у животных на ЭКГ отмечается увеличение интервала R–R, P–Q, снижается вольтаж, развивается брадикардия, что свидетельствует о гипоксическом состоянии и дистрофических повреждениях миокарда (С.О. Тапбергенов, 1985).

In vitro установлено активирующее действие малых доз адреналина и норадреналина на митохондриальную ДНФ-активируемую АТФ-азу, предотвращаемое альфа-адреноблокадой. При этом катехоламины могут повышать уровень АТФ и соотношение АТФ/АДФ, что может быть связано с активацией митохондриальной АТФ-синтетазы (Titheradge M.A. et al., 1979).

Введение норадреналина в дозе 0,5 мг/100 гр и дофамина в дозе 1,5 мг/100 гр до исследования повышает активность СДГ и АТФ-азы в митохондриях сердца (табл. 16).

Однако, имеет место факт, что введение адреналина животным может ослабить сопряжение дыхания и фосфорилирования в сердце (В.В. Долгов и др., 1974), а обработка митохондрий печени повышает коэффициент АДФ/О (Forichon J. et al., 1972/1973).

Повышение уровня коэффициента окислительного фосфорилирования Р/О и снижение активности АТФ-азы митохондрий печени было обнаружено через 15 минут после введения адреналина в дозе 0,05 мг на 100 г массы тела животного (В.Е. Судовцев, 1969).

Таблица 16

Влияние введения норадреналина (0,5 мг/100 гр) и дофамин (1,5 мг/100 гр) на активность ферментов митохондрий сердца

Фермент Контроль Норадреналин Дофамин
СДГ 10,48 ± 0,87 30,34 ± 2,91* 48,32 ± 4,44*
ЦХО 16,31 ± 1,10 16,59 ± 1,89 19,83 ± 2,41
АТФ-аза 59,60 ± 3,96 38,83 ± 4,17* 27,19 ± 1,51*

Примечание: * – достоверность Р < 0,001 в сравнении с контролем.

Истощение запасов тканевых катехоламинов, снижение их захвата введением резерпина, также приводит к увеличению коэффициента Р/О и к снижению активности АТФ-азы митохондрий мозга, печени и почек (В.Е. Судовцев, 1969).

Все эти данные свидетельствуют об участии катехоламинов в регуляции биоэнергетических процессов и функций митохондрий. Вместе с тем, при этом остается много неясных вопросов.

В частности, каково значение адренорецепторов в реализации эффектов катехоламинов на митохондриальные процессы? В чем причина разнонаправленности эффектов катехоламинов в опытах in vivo и in vitro? Почему дозы катехоламинов близкие к физиологическим не вызывают дисбаланса между тканевым дыханием и их физиологическим функциям, а токсические дозы вызывают не только феномен «кислородной утечки», но и приводят к некротическим изменениям в тканях?

Ответы на эти вопросы в значительной степени кроются в возможностях трансметаболитного контроля биоэнергетических процессов, осуществляемой как целостной молекулой гормона-медиатора, так и его метаболизированными структурами.

В этом отношении концепция А.М.

Утевского о функциональном значении обмена регуляторов обмена, приобретает особое значение в расшифровке механизмов регуляции биоэнергетики клетки и их физиологических функций гормонов-медиаторов симпато-адреналовой системы.

Ссылка на основную публикацию
Adblock
detector