Взаимодействие вируса с клеткой. Характер взаимодействия вирус-клетка. Продуктивное взаимодействие. Вирогения. Интерференция вирусов.

Физиология вирусов

Вирусы растут только внутриклеточно, т.е. являются облигатными внутриклеточными паразитами. В клетке они могут находиться в различных состояниях.

Нарушения, вызываемые вирусами, весьма разнообразны: от продуктивной инфекции с образованием вирусного потомства и гибелью клетки до продолжительного взаимодействия вируса с клеткой в виде латентной инфекции или злокачественной трансформации клетки.

Инфицирование клетки вирусом может иметь следующие последствия:

— разрушение клетки (некроз)в результате цитоцидной инфекции, т.е. репродукция вируса приводит к цитоцидному действию (в культуре клеток происходит цитопатический эффект — клетки округляются, отделяются от соседних клеток, образуются многоядерные гигантские клетки, вакуоли и включения);

  • — разрушение клетки (апоптоз)в результате инициации вирусом програмированной клеточной гибели, при этом вирусный репликативный цикл часто прерывается;
  • — разрушение клетки в итоге не самим вирусом, а иммунными реакциями организма;
  • — вирус находится внутри клетки, но не разрушает ее (латентная инфекция);
  • — вирус трансформирует клетку организма в раковую клетку.
  • Хорошо изучены три основных типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный.

Продуктивный тип взаимодействия завершается воспроизводством вирусного потомства — многочисленных вирионов и гибелью зараженных клеток (цитоцидное действие). Некоторые вирусы выходят из клеток, не разрушая их (нецитоцидное действие).

  1. Абортивный тип взаимодействия не завершается образованием новых вирионов, поскольку инфекционный процесс, в клетке прерывается на одном из этапов.
  2. Интегративный тип взаимодействия, или вирогения, характеризуется встраиванием (интеграцией), вирусной ДНК в виде провируса в хромосому клетки и их совместной репликацией.
  3. Продуктивный тип взаимодействия вируса с клеткой

Продуктивный тип взаимодействия вируса с клеткой, т.е. репродукция вируса (от лат. re — повторение, productio — производство), проходит несколько стадий:

  • 1) адсорбция вириона на клеточной мембране;
  • 2) проникновение вириона в клетку, «раздевание» и высвобождение вирусного генома (депротеинизация вируса);
  • 3) синтез вирусных компонентов;
  • 4) сборка реплицированной нуклеиновой кислоты и новых капсидных белков;
  • 5) выход вирусного потомства из клетки.

Адсорбция вириона, т.е. его прикрепление к клеточной мембране, — первая стадия репродукции вирусов.

Она происходит в результате взаимодействия поверхностных молекул (белковых лигандов) вируса с мембранными рецепторами клеток вирусов.

Белки поверхности вирусов, например гликопротеины липопротеиновой оболочки, узнающие специфические клеточные рецепторы и взаимодействующие с ними, называются прикрепительными белками.

Взаимодействие вирусов с клеточными организмами

Взаимодействиевируса с клеткой представляет собой сложный многоступенчатый процесс, который во всех случаях начинается с адсорбции вирионов на рецепторах клеточного организма. Однако дальнейшее течение данного процесса может происходить по-разному, в зависимости от сопутствующих условий.

Известны три основных типа взаимодействия вируса с клеткой: 1) продуктивный тип, завершающийся образованием многочисленного потомства — новых вирусных частиц; 2) абортивный тип, когда репродукции вирусов не происходит, поскольку инфекционный процесс прерывается на одном из этапов взаимодействия с клеткой; 3) интегративный тип, или вирогения, характеризующийся встраиванием вирусной нуклеиновой кислоты в хромосому клетки хозяина.

Продуктивный тип взаимодействия (репродукция вирусов).

Репродукция вирусов происходит путем проникновения их в клетку, репликации нуклеиновой кислоты и синтеза их белков с использованием генетического и белоксинтезирующего аппарата клетки с последующей самосборкой вириона.

Этот процесс происходит в различных частях клетки — цитоплазме, рибосомах, ядре, вследствие чего получил название дизъюнктивного, т. е. разобщенного размножения.

  • Репродукция вирусов осуществляется в несколько стадий, последовательно сменяющих друг друга:
  • 1. Адсорбция вириона на клетке;
  • 2. Проникновение вириона в клетку хозяина;
  • 3. “Раздевание” вирионов;
  • 4. Биосинтез вирусных компонентов в клетке;
  • 5. Формирование (сборка) вирусных частиц;
  • 6. Выход вирусного потомства из клетки

1) Адсорбция вируса на поверхности восприимчивой клетки реализуется через взаимодействие со специфическими поверхностными рецепторами. Подобные рецепторы имеются у многих клеток (например у эритроцитов). Это свойство используют для идентификации многих возбудителей.

Процесс адсорбции не зависит от температуры и протекает в две фазы: 1 — ионное притяжение между вирусом и клеткой, взаимодействие носит неспецифический характер.

2- физическое прикрепление вирусной частицы к соответствующему поверхностному рецептору, процесс обусловлен структурной гомологией либо комплементарностью специфических рецепторов.

На процесс адсорбции существенное влияние оказывает тканевая специфичность.

2) Пенетрация (проникновение) в клетку. После завершения этапа адсорбции вирус проникает в клетку, где происходит частичная депротеинизация вирионов и модификация их нуклеопротеида (раздевание). Модифицированные частицы теряют инфекционные свойства и ряд других признаков, специфичных для отдельных групп вирусов.

Процесс зависит от температуры и может протекать по двум путям:

— проникновение вируса может осуществляться через слияние мембран вируса и клетки, в результате чего внутренние структуры вируса оказываются в цитоплазме заражённых клеток, а вирусные оболочки — на поверхности клеток.

Другой путь — проникновение вирусных частиц посредством пиноцитоза. Затем происходит образование вакуоли вокруг вируса, попавшего в цитоплазму. Кислая среда обусловливает слияние вирусной оболочки и мембраны эндосомы, в результате чего нуклеокапсид проникает в цитоплазму.

3)“Раздевание” вирионов— заключается в удалении защитных вирусных оболочек и освобождении вирусной нуклеиновой кислоты.

“Раздевание вирусов происходит постепенно, в несколько этапов, каждый из которых проходит в определенных участках цитоплазмы и ядра клетки хозяина. Этот процесс проходит с использованием набора клеточных ферментов.

Конечным продуктом “раздевания” вирусных частиц является нуклеиновая кислота. После депротеинизации вирусы невозможно выделить из культуры клеток, этот этап репродукции известен как фаза э΄клипса.

Термини э΄клипс (от первичной пенетрации до появления первого вириона нового поколения) взят из астрономии – затмение Солнца или Луны; Он требует энергетических затрат и не происходит при температуре 0-40С (исключая вирус гриппа). Фаза заканчивается одновременно с процессом сборки.

4) Синтез вирусных частиц (стадия созревания вирусных частиц) включает образование посредством трансляции нуклеиновых кислот вирусспецифических белков.

Реализация генетической информации вирусной нуклеиновой кислоты осуществляется в соответствии с общеизвестными в биологии процессами, трансляции и репликация. Белки синтезируются в цитоплазме, а место сборки генома вирусов может быть различным.

Обычно первыми образуются продукты, регулирующие репродукцию — ферменты и регуляторные белки. Позднее синтезируются белки, обеспечивающие сборку дочерних популяций, их синтез включает несколько этапов, специфичных для различных вирусов.

5) Сборка вирусных частиц — состоит прежде всего в образовании нуклеокапсидов. Синтезированные вирусные нуклеиновые кислоты и белки обладают способностью специфически узнавать друг друга и при достаточной их концентрации самопроизвольно соединятся в результате гидрофобных, водородных и ионных взаимодействий.

6) стадия выхода размножившегося вируса из инфицированной клетки — высвобождение дочерних вирионов.

Продолжительность осуществления полного цикла репродукции вирусов, варьирует от 5 — 6 часов (вирус гриппа) до нескольких суток (вирус кори). Образовавшиеся вирусы способны инфицировать новые клетки.

Интегративный тип взаимодействия вируса с клеткой — интеграция вирусной нуклеиновой кислоты в клеточный геном (вирогения). Интегративный тип взаимодействия (вирогения) характеризуется встраиванием нуклеиновой кислоты вируса в хромосому клетки.

При этом вирусный геном реплицируется и функционирует как составная часть клеточного генома.

Интеграция вирусного генетического материала с ДНК клетки характерна для определенных групп вирусов: онкогенных (опухолеродных) вирусов, бактериофагов, вирусов герпеса, гепатита, аденовирусов, ВИЧ и др.

Наиболее типичные примеры подобного взаимодействия — лизогения бактерий и вирусная трансформация клеток.

Некоторые ДНК-вирусы и ретровирусы вызывают латентные инфекции поражённых клеток, при этом вирусная ДНК персистирует как экстрахромосомный элемент либо интегрируется в геном клетки и реплицируется параллельно с хромосомами.

Типичный пример латентной инфекции — герпетические инфекции с характерными периодическими реактивациями процесса.

В случае ретровирусов латентные инфекции могут вызывать трансформацию клеток и индуцировать начало злокачественного роста.

Некоторые РНК-вирусы вызывают персистирующие инфекции, характеризуются постепенным выделением вирусных частиц, что не сопровождается гибелью клетки, иногда они протекают без клинических проявлений. В частности, вирус гепетита В способен вызывать персистирующие поражения с развитием хронического гепатита и часто опухолей печени.

Интеграция вирусной нуклеиновой кислоты с ДНК клетки имеет большой биологический смысл, который прежде всего заключается в сохранении вирусной информации в составе клеточного генома и ее передаче потомству.

Вместе с тем такой механизм взаимодействия в определенной степени отражается и на эволюции клеточных организмов и вирусов, которые при выщеплении из клеточной хромосомы могут захватывать отдельные гены и переносить их в геном других организмов.

Читайте также:  Синдром стерджа—вебера—краббе. признаки синдрома стерджа-вебера-краббе.

Таким образом, вирусы не способны к собственному обмену веществ. Но это вовсе не мешает их биологическому существованию. Они отлично используют обмен веществ поражённой клетки, обмен, представляющий ее собственное прирождённое свойство.

В клетке хозяина вирусные нуклеиновые кислоты реплицируются, не подчиняясь клеточному расписанию, а вирусные белки синтезируются, хотя и на клеточном оборудовании, но по собственному расписанию.

Более того, структурная примитивность позволяет вирусной частице годами оставаться в клетке в состоянии подавленной, латентной жизни.

Несмотря на чрезвычайно простое строение в сравнении с живой клеткой, он совершеннейшим образом использует имеющиеся в клетке условия и мобилизует в свою пользу весь её механизм. Размножение вируса может заканчиваться гибелью клетки.

Но некоторые вирусы ведут себя более расчётливо. Они не убивают клетку, обеспечивающую им «хлеб и кров». А находят способ для относительно мирного с ней существования.

Развивается хронический инфекционный процесс, при котором «и волки сыты и овцы целы», хотя и не вполне здоровы.

Сосуществование с вирусом не обходится бесследно для клетки. Свойства её могут драматически меняться под влиянием хозяйничающих в ней вирусных белков. В некоторых случаях заражённая клетка становится раковой.

Вирусы и рак

Вирусы вызывают рак у многих групп животных. Эти вирусы имеют фермент – обратную транскриптазу, которая синтезирует комплементарную ДНК на РНК вируса. Затем двухцепочечный фрагмент ДНК встраивается в хромосому клетки хозяина, вызывая злокачественные опухоли или лейкемии у млекопитающих, птиц и рептилий.

Изучая вирус саркомы Рауса (ретровируса, вызывающего опухоли цыплят), учёные обнаружили онкогены, которые, вмешиваясь в регуляцию жизнедеятельности клетки, вызывают рак. Онкогены присутствуют и в здоровых клетках, но, изменяясь под действием мутагенных веществ (например, сигаретного дыма), приводят к образованию злокачественных опухолей.

Помимо ретровирусов существует группа ДНК-содержащих герпесвирусов (вирусы Эпштейна – Барр), вызывающие два типа рака у человека. Эти же вирусы являются причиной инфекционного мононуклеоза.

Вирусы животных

Среди беспозвоночных вирусные болезни обнаружены только у насекомых, моллюсков. Следует, однако, иметь в виду, что насекомые — экономически важный и потому наиболее тщательно изученный класс беспозвоночных.

Известны вирусные заболевания у рыб (оспа карпа, вирусные опухоли) и амфибий (опухоль почки леопардовой лягушки). Описано много вирусных заболеваний у птиц. Некоторые из них очень важны в экономическом отношении. Онкогенные вирусные заболевания у птиц (саркомы и лейкозы) служат излюбленной моделью при изучении роли вирусов в этиологии опухолей.

Среди млекопитающих вирусные болезни обнаружены у большинства домашних и многих диких животных. У человека вирусными являются такие важные в эпидемиологическом отношении заболевания, как оспа, желтая лихорадка, полиомиелит, корь, свинка, бешенство и различные энцефалиты.

Идентифицировать вирусный агент можно по симптомам, наблюдаемым на уровне организма, ткани или клеток и в особенности по иммунологической реакции организма.

Удобной системой для индукции локальных поражений является мембрана куриного эмбриона. Суспензия вируса, нанесённая на эту мембрану, может распространяться на соседние клетки только контактным способом, образуя локальные зоны поражения типа оспин, форма которых очень характерна для данного вируса.

Ещё более полезными для выявления вирусов оказались однослойные культуры клеток.

Если после инокуляции вируса на слой клеток нанести смесь питательной среды с раствором затвердевающего затем агара, размножение вируса будет ограничено контактирующими друг с другом клетками, в результате чего образуются четко отделённые друг от друга бляшки, характер локальной реакции культуры зависит как от вируса, так и от клеток. Например, опухолеродные вирусы образуют в культуре не бляшки, а очаги клеточной пролиферации. Используемые клетки должны обладать чувствительностью к вирусу, которая определяется либо генетическими факторами, либо стадией развития ткани, из которой получены клетки.

Вирусы растений

У голосеменных растений, папоротников, грибов и водорослей пока обнаружено относительно немного вирусов. Напротив, цветковые растения служат хозяевами для многих типов вирусов. Вирусы растительных клеток вызывают у растений множество заболеваний. Эти вирусы попадают внутрь растительных клеток через повреждения, а не в результате активного внедрения.

В естественных условиях распространение многих вирусов происходит путем прямого контакта растений или через переносчиков. Переносчиками многих вирусов служат насекомые.

По ущербу, причиняемому экономически важным культурам, в том числе картофелю, свёкле, табаку, сахарному тростнику, кокосовой пальме и плодовым культурам, вирусы уступают только патогенным грибам.

Наиболее распространённым типом локальных поражений являются некротические поражения, обычно имеющие вид пятен характерной формы, вокруг которых часто образуется кольцо или ореол.

Образование таких дискретных очагов поражений является результатом крайне быстрой гибели заражённых клеток, благодаря чему некротический участок остаётся локализованным, вирус далее не распространяется, и растение выживает.

Часто локальные очаги вирусной инфекции можно обнаружить и в случаях отсутствия некротических поражений.

Вирусная инфекция проявляется у растений самыми разнообразными симптомами: хлороз, мозаичность, полосатость, желтуха, кольцевая пятнистость, хрупкость цветков и скручивание листьев.

Некоторые вирусы растений вызывают специфические пролиферативные заболевания. Так, вирус раневой опухоли вызывает множественные опухоли в местах, где растение было травмировано.

Некоторые вирусы передаются от одного хозяина к другому только членистоногими переносчиками. Вирус попадает в организм переносчика во время питания заражённым растением, а затем переносится в чувствительную ткань растения-реципиента.

Типы взаимодействия вируса с клеткой. Продуктивная вирусная инфекция

Вирусы, их особенности, строение вириона. Принципы классификации вирусов.

Вирусы – мельчайшие микробы, относящиеся к царству Virae (лат. virus – яд).

Вирусы не имеют клеточного строения, состоят из ДНК- или РНК-генома, окружённого белками.

Являясь автономными генетическими структурами и облигатными внутриклеточными паразитами, вирусы размножаются в цитоплазме или ядре клеток и не имеют собственной метаболической системы.

Для них характерен разобщённый (дизъюнктивный) способ размножения: в разных частях вирусинфицированной клетки происходит образование вирусных компонентов, а затем их сборка.Зрелая вирусная частица называется вирионом.

Размер вириона вируса чрезвычайно мал и лежит в диапозоне 15-400 нм, поэтому вирусы возможно изучать только с помощью электронной микроскопии.

Вирусы содержат только какую-то одну нуклеиновую кислоту: РНК или ДНК. Таким образом, различают ДНК-содержащие и РНК-содержащие вирусы. Геном вирусов достаточно скромный: в среднем от 5 до 200 генов.

РНК-содержащие вирусы имеют полярную нуклеиновую кислоту. Различают плюс-нить РНК (позитивная нить) и минус-нить РНК (негативная нить).

Позитивная РНК является одновременно источником наследственного материала, с другой стороны, может выступать в качестве мРНК, т.е. транслироваться с образованием белковых молекул.

Негативная нить выступает только в качестве геномной нуклеиновой кислоты, для синтеза белка нужно синтезировать комплементарную ей нить с помощью РНК-зависимой-РНК-полимеразы.

Различают простые и сложные вирусы.

Простые вирусы содержат только нуклеиновую кислоту, связанную с белковой структурой, называемой капсидом. Некоторые простые вирусы во внешней среде могут кристаллизоваться. Такие вирусы разрушают инфицированную клетку (лизис).

Сложные вирусы содержат кнаружи от капсида двойную липопротеиновую оболочку, которая сформировалась при слиянии вируса с ЦПМ клетки хозяина, мембраной ЭПС, ядра и т.д.

Эту оболочку иначе называют суперкапсидом, на котором расположены гликопротеиновые шипики. Обработка вирусов эфиром приводит к растворению этих шипиков, и вирус инактивируется.

Под оболочкой некоторых вирусов находится матриксный белок (М-белок).

  • Нуклеиновую кислоту вирусов называют сердцевиной (в некоторых случаях она связана с гистоноподобными белками).
  • Формы вириона по типу симметрии капсида:
  • — спиральный;
  • — икосаэдрический;
  • — продолговатый;
  • — комплексный
  • Спиральный капсид – отдельные белковые фрагменты капсида – капсомеры – уложены спирально по ходу нуклеиновой кислоты.
  • Икосаэдрический капсид – капсомеры формируют геометрически правильное тело, внутри которого расположена нуклеиновая кислота.
  • Продолговатый капсид – капсомеры образуют вытянутые вдоль продольной оси структуры (это бактериофаги).
  • Комплексный капсид – имеет смешанный характер, сочетает черты спирального и икосаэдрического капсида.
  • Классификация вирусов.
  • Лауреат Нобелевской премии Балтимор предложил схему классификации всех вирусов на основе строения их генетического материала, поместив вирусы в 7 групп.
Читайте также:  Нефлуан гель или мазь 5 мг + 250 мкг + 25 мг - инструкция по применению, формы выпуска, аналоги и отзывы пациентов
Группа Семейство Представители
ДНК (двунитевые)-вирусы Поксвирусы (Poxviridae) Вирус натуральной оспы
Герпесвирусы (Herpesviridae) Вирусы герпеса, Эпштейна-Барр, ветряной оспы
Аденовирусы (Adenoviridae) Аденовирусы человека
Папилломавирусы (Papillomaviridae) Вирус папилломы человека
Полиомавирусы (Polyomaviridae) Полиомавирусы человека
ДНК (однонитевые)-вирусы Парвовирусы (Parvoviridae) Парвовирус человека
РНК(двунитевые)-вирусы Реовирусы (Reoviridae) Вирус Кемерово, колорадской клещевой лихорадки, ротавирусы человека
РНК (плюс-однонитевые)-вирусы Пикорнавирусы (Picornaviridae) Вирус полиомиелита, Коксаки А и В, ECHO, вирус гепатита А, риновирусы человека
Калицивирусы (Caliciviridae) Вирусы гастроэнтерита группы Норволк
Гепевирусы (Hepeviridae) Вирус гепатита E
Коронавирусы (Coronaviridae) Коронавирусы человека, торовирусы
Флавивирусы (Flaviviridae) Вирус жёлтой лихорадки, клещевого энцефалита, вирус гепатита C
Тогавирусы (Togaviridae) Вирус краснухи
РНК (минус-однонитевые)-вирусы Борнавирусы (Bornaviridae) Вирус болезни Борна
Филовирусы (Filoviridae) Вирус Эбола
Парамиксовирусы (Paramyxoviridae) Вирусы кори, парагриппа, эпидемического паротита
Рабдовирусы (Rhabdoviridae) Вирус бешенства, везикулярного стоматита
Ортомиксовирусы (Orthomyxoviridae) Вирус гриппа
Буньявирусы (Bunyviridae) Вирус геморрагической лихорадки, вирус гепатита D
РНК-вирусы (обратнотранскрибирующиеся) Ретровирусы (Retroviridae) ВИЧ
ДНК-вирусы (обратнотранскрибирующиеся) Гепаднавирусы (Hepadnaviridae) Вирус гепатита B

Типы взаимодействия вируса с клеткой. Продуктивная вирусная инфекция.

  1. Вирусы являются облигатными внутриклеточными паразитами, поэтому все изменения, происходящие с клеткой, обусловлены именно присутствием вируса в клетке.
  2. С клеткой могут происходить следующие изменения:
  3. 1. Некроз клетки;
  4. 2. Апоптоз клетки;
  5. 3. Элиминация клетки T-киллером, NK-клеткой;
  6. 4. Вирус находится внутри клетки, но не разрушает её (латентная инфекция);

5. Вирус трансформирует клетку в опухолевую.

  • Различают 3 основных типа взаимодействия вируса с клеткой:
  • — продуктивный тип;
  • — абортивный тип;
  • — интегративный тип
  • Продуктивный тип.
  • Осуществляется в несколько стадий:
  • 1. Адсорбция вириона на клеточной мембране;
  • 2. Проникновение вириона в клетку, «раздевание» и высвобождение вирусного генома (депротеинизация);
  • 3. Синтез вирусных компонентов;
  • 4. Сборка новых вирионов;
  • 5. Выход потомства из клетки

Адсорбция вириона осуществляется благодаря взаимодействию поверхностных белковых структур вируса и рецепторов клеток. Вирусы обладают тропизмом, т.е. прикрепляются к строго определённым клеткам.

Проникновение вириона в клетку возможно в результате рецепторопосредованного эндоцитоза или при слиянии мембраны клетки с оболочкой вируса.

В случае рецепторопосредованного проникновения в месте контакта вируса с клеткой образуется впячивание, и вирус проникает в клетку в составе мембранного пузырька.

Сложные вирусы проникают в клетку путём слияния мембраны клетки-хозяина и липидной оболочки. Данный процесс возможен при наличии белка слияния (F-белка), который обнаруживается в составе суперкапсида.

При таком пути транспорта вируса внутри клетки оказывается капсид, а суперкапсид встраивается в плазматическую мембрану, поэтому данная клетка приобретает способность сливаться с другими клетками, передавая им вирус.

В клетке также происходит «раздевание» вируса, когда нуклеиновая кислота освобождается от многих белков (депротеинизация). Этот процесс специфичен для разных вирусов: у пикорнавирусов осуществляется в цитоплазме при слиянии эндосомы с лизосомами; для герпесвирусов – околоядерное пространство; у аденовирусов – сначала цитоплазматические структуры, а затем ядро клетки.

  1. Синтез вирусных компонентов – это синтез вирусных белков, которые можно поделить на 2 большие группы:
  2. — неструктурные белки, которые по большей части являются ферментами, участвующими в процессе репродукции;
  3. — структурные белки вируса: белки, связанные с нуклеиновой кислотой, белки капсида, а также суперкапсидные белки.
  4. Синтез белка состоит из последовательно протекающих процессов транскрипции и трансляции, в общих чертах не отличаясь от соответствующих процессов у про- и эукариот.
  5. Последовательность основных событий у разных групп вирусов следующая:

— ДНК-содержащие вирусы имеют ДНК-геном, который транскрибируется с участием РНК-полимеразы.

Но для тех вирусов, у которых этот процесс протекает в цитоплазме клетки, характерно наличие собственной вирусной РНК-полимеразы, а если транскрипция осуществляется в ядре (аденовирусы, вирус герпеса), то для неё используются содержащиеся в ядерном соке РНК-полимераза II или III типа.

После образования мРНК осуществляется её трансляция (при использовании рибосом клетки) с образованием вирусных белков. Таким образом, передача генетической информации происходит в ряду ДНК – мРНК – белок;

— плюс-нитевые РНК-содержащие вирусы имеют нить РНК, которая выступает в качестве мРНК, поэтому транскрипция не требуется, белок синтезируется с данной РНК;

— минус-нитевые РНК и двунитевые реовирусы имеют геном, который играет роль матрицы для синтеза РНК при участии РНК-полимеразы, поэтому в ряду синтеза белка имеем следующие компоненты: геномная РНК вируса – мРНК – вирусные белки;

— ретровирусы (ВИЧ, онкогенные ретровирусы) имеют геном, состоящий из двух комплементарных цепей РНК.

У этих вирусов имеется фермент обратная транскриптаза (ревертаза), которая синтезирует на базе одной из нитей РНК нить ДНК, которая комплементарно достраивает себе вторую.

Полученная двунитевая ДНК интегрирует в клеточный геном, в составе которого транскрибируется на мРНК с участием ДНК-зависимой-РНК-полимеразы. Трансляция этой мРНК приводит к накоплению вирусных белков.

Формирование вирионов – белки и нуклеиновые кислоты вируса синтезируются в разных частях клетки, поэтому такой способ репродукции вируса получил название дизъюнктивный.  

Синтезированные компоненты вирусной частицы доставляются в определённые места цитоплазмы или ядра, где и происходит сборка при участии ионных, водородных, гидрофобных связей, а также за счёт комплементарного стерического соответствия молекул.

Формирование вириона – многоступенчатый этап, однако у простых вирусов протекающий быстрее: связывание белков капсомеров нуклеиновыми кислотами с образованием нуклеокапсида.

У сложных вирусов формируется также модифицированная липидная мембрана – аналог будущей липидной оболочки вируса.

Кроме того, в состав суперкапсида могут включаться гликопротеины, а под суперкапсидом в некоторых случаях (Ортомиксовирусы) обнаруживают матриксный М-белок, который, будучи гидрофобным, выступает посредником между суперкапсидом и нуклеокапсидом.

Выход вирусов из клетки – в инфицированной клетке образуется 100-1000 зрелых вирионов, которые могут выходить из клетки следующими путями:

— взрывной путь – характерен для простых (безоболочечных) вирусов, когда из клетки выходит одновременно много вирионов, а клетка погибает (происходит её лизис);

— почкование (экзоцитоз) – характерно для сложных (оболочечных) вирусов, причём сначала образующийся нуклеокапсид транспортируется к тому или иному участку ЦПМ клетки-хозяина, затем образуется выпячивание (почка), и вирус отделяется от клетки-хозяина, имея в своём составе липидную мембрану инфицированной клетки. Таким образом из клетки может выходить большое количество вирусов, но целостность клетки будет сохраняться.

Абортивный тип.

При таком типе взаимодействия попадание вируса в клетку не приведёт к образованию вирусного потомства. Связано это с тем, что вирус является дефектным.

Дефектность вирусов можно расценить по-разному.

С одной стороны, есть вирусы, которые сами по себе не могут реализовать продуктивную инфекцию, им нужен вирус-помощник (вирус гепатита D репродуцируется только в присутствии вируса гепатита B), с другой стороны, есть вирусные частицы, имеющие неполноценный геном, которые подавляют репродукцию других вирусов – дефектные интерферирующие частицы (ДИ-частицы).

Интегративный тип.

Этот тип взаимодействия заключается во встраивании генома вируса в геном клетки-хозяина.

Такой тип взаимодействия характерен для бактериофагов, ВИЧ, онкогенных вирусов, вируса гепатита B.

Геном вируса встраивается в виде двунитевой молекулы ДНК, замкнутой в кольцо, которая интегрируется в геном клетки-хозяина в области гомологии нуклеотидных последовательностей.

Встроенная в геном ДНК вируса называется провирусом. Он реплицируется в составе генома клетки, передаваясь в ряду дочерних клеток, и это называется вирогенией.

Присутствие чужеродного генома нередко может придать клетки определённые новые свойства, причём часто это опухолевая трансформация.

Длительное сосуществование генома вируса и клетки-хозяина – основа для развития длительно текущих вирусных инфекций (латентные инфекции).

65. Взаимодействие вируса с чувствительной клеткой. Продуктивная и интегративная инфекция

Вирусы — облигатные внутриклеточные паразиты, способные размножаться только в живой клетке. В отличие от прокариотических и эукариотических микроорганизмов вирусы не размножаются бинарным делением.

Размножение вирусов происходит путём репродукции (англ, «reproduce» — воспроизводить, делать копию), то есть воспроизведение их нуклеиновых кислот и белков z последующей сборкой вирионов. Синтез нуклеиновых кислот и белков вируса происходит в разных частях клетки (ядре и цитоплазме).

Такой способ репро­дукции получил название дизъюнктивного (разобщённого).

Читайте также:  Разрешающая способность электронного микроскопа. Увеличение электронной микроскопии.

Процесс репродукции вирусов условно можно разделить на 2 фазы. Первая фаза включает 3 стадии:

  • адсорбцию вируса на чувствительных клетках;
  • проникновение вируса в клетку;
  • депротеинизацию вируса.

Вторая фаза включает стадии реализации вирусного генома:

  • транскрипцию,
  • трансляцию,
  • репликацию,
  • сборку, созревание вирусных частиц,
  • выход вируса из клетки.

Взаимодействие вируса с клеткой начинается с процесса адсорбции, т. е. с прикрепления вируса к поверхности клетки.

Адсорбция представляет собой специфическое связывание вирионного белка (антирецептора) с комплементарной структурой клеточной поверхности — клеточным рецептором.

По химической природе рецепторы, на которых фиксируются вирусы, относятся к двум группам: мукопротеидным и липопротеидным. Вирусы гриппа, парагриппа, аденовирусы фиксируются на мукопротеидных рецепторах.

Энтеровирусы, вирусы герпеса, арбовирусы адсорбируются на липопротеидных рецепторах клетки.

Адсорбция происходит лишь при наличии определённых электролитов, в частности ионов Са2+, которые нейтрализуют избыточные анионные заряды вируса и клеточной поверхности и уменьшают электростатическое отталкивание Адсорбция вирусов мало зависит от температуры  Начальные процессы адсорбции носят неспецифический характер, являются результатом электростатического взаимодействия положительно и отрицательно заряженных структур на поверхности вируса и клетки, а затем наступает специфическое взаимодействие прикрепительного белка вириона со специфическими группировками на плазматической мембране клетки.

Простые вирусы человека и животных содержат прикрепительные белки в составе капсида. У сложно организованных вирусов прикрепительные белки входят в состав суперкапсида.

Они могут иметь форму нитей (фибры у аденовирусов), либо шипов, грибоподобных структур у миксо-, ретро-, рабдо- и других вирусов. Вначале происходит единичная связь вириона с рецептором — такое прикрепление непрочное — адсорбция носит обратимый характер.

Чтобы наступила необратимая адсорбция, должны появиться множественные связи между рецептором вируса и рецептором клетки, т. е. стабильное мультивалентное прикрепление. Количество специфических рецепторов на поверхности одной клетки составляет 104-105.

Рецепторы для некоторых вирусов, например, для арбовирусов. содержатся на клетках как позвоночных, так и беспозвоночных, для других вирусов только на клетках одного или нескольких видов.

Проникновение вирусов человека и животных в клетку происходит двумя путями:

  • виропексисом (пиноцитозом);
  • слиянием вирусной суперкапсидной оболочки е клеточной мембраной.

Бактериофаги имеют свой механизм проникновения, так называемый шприцевой, когда в результате сокращения белкового отростка фага нуклеиновая кислота как бы впрыскивается в клетку.

Депротеинизация вируса освобождение генома вируса от вирусных защитных оболочек происходит либо с помощью вирусных ферментов, либо с помощью клеточных ферментов. Конечными продуктами депротеинизации являются нуклеиновые кислоты или нуклеиновые кислоты, связанные с внутренним вирусным белком. Затем имеет место вторая фаза вирусной репродукции, ведущая к синтезу вирусных компонентов.

Различают три типа взаимодействия вируса с клеткой:

  • продуктивный,
  • абортивный,
  • интегративный.

Продуктивный тип — завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

Абортивный тип — не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.

Интегративный тип, или вирогения — характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

Взаимодействие вируса с клеткой хозяина

Взаимодействие вируса с клеткой хозяина — это сложный «ногоступенчатый процесс, который начинается с адсорбции вирусных частиц на рецепторах клетки хозяина и продолжается после их проникновения внутрь клетки.

В результате такого взаимодействия мовивается либо продуктивная, либо абортивная, либо интегративная форма клеточной инфекции. При продуктивной форме происходит размножение, точнее, репродукция (лат.

reproduce — воспроизводить) вируса, при абортивной — ее нарушение на одном из этапов, при интегративной — интеграция вирусной нуклеиновой кислоты в клеточный геном.

Продуктивная инфекция. Репродукция вирусов

Как отмечалось выше, вирусы являются самореплицирующейся формой, неспособной к бинарному делению, в отличие от микроорганизмов с клеточной организацией.

В 50-х годах было установлено, что размножение, или репродукция, вирусов происходит путем репликации их нуклеиновой кислоты и биосинтеза белков с последующей самосборкой вириона.

Этот процесс происходит в разных частях клетки — ядре или цитоплазме, вследствие чего получил название дизъюнктивного, т.е. разобщенного размножения.

Вирусная репродукция представляет собой уникальную форму выражения чужеродной (вирусной) информации в клетках человека и животных, насекомых, растений и бактерий, которая состоит в подчинении клеточных матрично-генетических механизмов вирусной информации.

1-я стадия — адсорбция — характеризуется прикреплением вириона к клеточным рецепторам, представляющим собой гликопротеины клеточной мембраны, содержащей нейраминовую кислоту. Такие рецепторы имеются у ряда клеток, в частности эритроцитов, на которых адсорбируются многие вирусы.

Для орто- и парамиксовирусов специфическими рецепторами являются гликолипиды, содержащие сиаловую кислоту (ганглиозиды), для других — белки или липиды клеточной мембраны. Рецепторами вирусов являются так называемые прикрепительные белки, располагающиеся в составе капсидов простых вирионов и суперкапсидов сложных вирионов.

Они могут иметь форму нитей (фибры у аденовирусов) или шипов (гликопротеиновые образования на внешней оболочке орто- и парамиксо-, рабдо-, арено- и буньявирусов).

Первый этап адсорбции определяется неспецифическими силами межмолекулярного притяжения, второй — специфической структурной гомологией или комплементарностью рецепторов чувствительных клеток и вирусов.

2-я стадия — проникновение вируса в клетку хозяина — происходит несколькими путями.

Рецепторно-опосредованный эндоцитоз характеризуется образованием в месте взаимодействия вириона с клеточным рецептором окаймленных пузырьков, в формировании которых принимают участие белки-клатрины.

Виропексис. Этим путем в клетку проникают сложноустроен-ные вирусы. Он заключается в слиянии мембран — вирусного суперкапсида с клеточной или ядерной мембраной.

Данный процесс происходит при помощи специального бека слияния — F-белка, который находится в суперкапсиде.

В результате виропексиса капсид оказывается в клетке хозяина, а суперкапсид вместе с белком встраивается в ее плазматическую мембрану (вследствие чего клетка приобретает способность сливаться с другими клетками, что приводит к передаче вируса этим клеткам).

Фагоцитоз. Данным путем вирус проникает в фагоцитирующие клетки, что приводит к незавершенному фагоцитозу.

3-я стадия — транспорт вируса внутри клетки. Он происходит с помощью внутриклеточных мембранных пузырьков, в которых вирус переносится на рибосомы, эндоплазматическую сеть или в ядро.

4-я стадия — «раздевание» вириона — заключается в их деп-оотеинизадии и освобождении от суперкапсида и капсида, препятствующих репликации вирусной нуклеиновой кислоты.

«Раздевание, вириона начинается сразу же после его прикрепления к клеточным рецепторам продолжается в эндоцитарной вакуоли и ее слиянии с лизосомами при участии протеолитических ферментов, а также в ядерных порах околоядерном пространстве при слиянии с ядерной мембраной.

5-я стадия называется эклипс-фазой, которая характеризуется исчезновением вириона, поскольку он перестает обнаруживаться при элданой микроскопии. В эту стадию начинается синтез компонентов вириона, т.е. его репродукция.

Она носит дизъюнктивный (раздельный) характер, поскольку компоненты вириона синтезируются в разных частях клетки: белки на рибосомах, нуклеиновые кислоты в ядре или цитоплазме.

Вирус использует для этого генетический аппарат клетки, подавляя необходимые ей самой синтетические реакции.

Эта стадия начинается с транскрипции и репликации вирусного генома. Транскрипция вирусного генома двунитевых ДНК-содержащих вирусов происходит, так же как и клеточного генома, по триаде ДНК- иРНК- белок.

Различия касаются только происхождения фермента ДНК-зависимой РНК-полимеразы, необходимой для данного процесса. У вирусов, геном которых транскрибируется в цитоплазме клетки хозяина (например, вирус оспы), имеется собственная вирусспецифическая РНК-полимераза.

Вирусы, геномы которых транскрибируются в ядре (папова- и аденовирусы, вирусы герпеса), используют содержащуюся там клеточную РНК-полимеразу II или III.

У РНК-содержащих вирусов транскрипция их генома осуществляется несколькими путями:

1. Вирусы с негативным геномом (минус-нитевые), к которым относятся орто-, парамиксо- и рабдовирусы, имеют в своем составе вирусспецифическую РНК-полимеразу или транскриптазу.

Они синтезируют иРНК на матрице геномной РНК. Подобный фермент отсутствует в нормальных клетках, но синтезируется клетками, зараженными вирусами.

Он находится в составе как однонитевых, так и двунитевых РНК-содержащих вирусов.

2. У вирусов с положительным геномом (плюс-нитевые), к которым относятся пикорна-, тогавирусы и др., функцию иРНК выполняет сам геном, который транслирует содержащуюся в нем информацию на рибосомы клетки хозяина.

Ссылка на основную публикацию
Adblock
detector