Организация генетического материала в клетке. Генотип. Что такое генная инженерия? Этапы получения генной продукции.

Генетическая инженерия (генная инженерия) – совокупность приемов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека.

Например, получение «биологических реакторов»  микроорганизмов, растений и животных, продуцирующих фармакологически значимые для человека вещества, создание сортов растений и пород животных с определенными ценными для человека признаками.

Сущность генной инженерии состоит в целенаправленной перестройке генетического аппарата (генома) клеток для изменения их генетических характеристик.

Эта задача осуществляется путем создания молекулярных химер ДНК, состоящих из фрагментов разного происхождения, например, из ДНК теленка, ДНК бактерии, или путем включения полученных искусственно ДНК, которых ранее не было в природе, в клетки-реципиенты, с целью синтеза ими определенного белка.

Генетическая инженерия позволяет получить молекулу бактериальной ДНК с встроенным в нее геном человека или животного. Первая рекомбинантная ДНК была получена в США в 1972 г.

, а десятью годами позже уже поступил в продажу человеческий инсулин (гормон, которого не хватает у больных сахарным диабетом), вырабатываемый бактериями Е. coli.

В настоящее время с помощью рекомбинантных ДНК производят интерфероны и интерлейкины (факторы иммунитета, применяющиеся при лечении многих заболеваний), гормон роста и другие полезные вещества.

ИСТОРИЯ ГЕНЕТИЧЕСКОЙ ИНЖЕНЕРИИ

Генетическая инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики. На протяжении многих лет главным классом макромолекул считали белки. Существовало даже предположение, что гены имеют белковую природу.

Лишь в 1944 году Эйвери, Мак Леод и Мак Карти показали, что носителем наследственной информации является ДНК. С этого времени начинается интенсивное изучение нуклеиновых кислот. Спустя десятилетие, в 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК.

Именно этот год принято считать годом рождения молекулярной биологии.

На рубеже 50-60-х годов были выяснены свойства генетического кода, а к концу 60-х годов его универсальность была подтверждена экспериментально. Шло интенсивное развитие молекулярной генетики, объектами которой стали Е. coli, ее вирусы и плазмиды.

Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов. ДНК вирусов и плазмид вводили в клетки в биологически активной форме, обеспечивая ее репликацию и экспрессию соответствующих генов. В 70-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК.

Особая роль в развитии методов генной инженерии принадлежит рестриктазам и ДНК-лигазам.

Историю развития генетической инженерии можно разделить на три этапа.

Первый этап связан с доказательством принципиальной возможности получения рекомбинантных молекул ДНК in vitro. Эти работы касаются получения гибридов между различными плазмидами. Была доказана возможность создания рекомбинантных молекул с использованием исходных молекул ДНК из различных видов и штаммов бактерий, их жизнеспособность, стабильность и функционирование.

Второй этап связан с началом работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами, доказательством их стабильности и жизнеспособности.

Третий этап – начало работ по включению в векторные молекулы ДНК (ДНК, используемые для переноса генов и способные встраиваться в генетический аппарат клетки-рецепиента) генов эукариот, главным образом, животных.

Формально датой рождения генетической инженерии следует считать 1972 год, когда в Стэнфордском университете П. Берг, С. Коэн, X. Бойер с сотрудниками создали первую рекомбинантную ДНК, содержавшую фрагменты ДНК вируса SV40, бактериофага и Е. coli.

Предпосылкой к исследованиям в генной инженерии послужили два открытия, сделанные в первой половине XX в.

Во-первых, было установлено, что вирусы, паразитирующие в бактериях (фаги), встраивают свою ДНК в геном бактерии, во-вторых, оказалось, что в бактериях, невосприимчивых к заражению фагами, содержатся специальные ферменты, которые разрезают двойные спирали фаговых ДНК в строго определенных местах.

Эти ферменты назвали рестриктазами. Первой была выделена реетриктаза Eco RI из кишечной палочки. Эта реетриктаза расщепляет связи между остатками адениловой и гуаниловой кислот в ДНК, содержащих в своих цепочках следующую нуклеотидную последовательность.

В настоящее время получены сотни рестриктаз из различных бактерий, обладающих специфичностью к участкам (сайтам) ДНК, имеющим палиндромное строение аналогично сайту для рестриктазы Eco RI. С помощью рестриктаз удается вырезать из молекул ДНК отдельные гены.

Следующее открытие, которое легло в основу технологии получения рекомбинантных ДНК, – обнаружение плазмид в бактериях.

Как известно, в клетках животных и высших растений основное количество ДНК сосредоточено в ядре и небольшая часть – в митохондриях (у растений также в хлоропластах).

В бактериях, не имеющих клеточного ядра, ДНК, в которой записана генетическая информация, находится в составе хромосом непосредственно в цитоплазме.

Но, кроме хромосомных ДНК, в бактериях содержатся, независимо от хромосомных, замкнутые кольцевые ДНК, которые также несут в себе генетическую информацию. Эта информация может передаваться из одной бактерии в другую трансмиссивными плазмидами. Процесс обмена генетической информацией между бактериями, отдаленно напоминающий механизм полового размножения растений и животных, называется конъюгацией. Перенос

ДНК из одной бактерии в другую при конъюгации осуществляется через микротрубочки (пили). Они построены из специального белка пилина, ген которого локализован в плазмиде. Таким путем возможна передача свойств даже микроорганизму другого вида, что было установлено еще в 1922 г. отечественным ученым Л. А. Зильбером.

Перенос генетической информации может произойти не только путем конъюгации двух клеток, но и свободная ДНК из лизированной (разрушенной) клетки может перейти в другую бактерию. Кроме того, паразиты бактерий (фаги) способны при заражении другой клетки передавать ей гены предыдущего хозяина. Процесс передачи генетического материала посредством плазмид и фагов называется трансдукцией.

Таким образом, способность микроорганизмов принимать чужеродную ДНК, а также существование плазмид, способных встраивать ее в свою структуру и переносить в другую клетку, предопределило возможность создания рекомбинантных ДНК.

При введении рекомбинантной ДНК, несущей чужеродный ген в клетки бактерий (реципиентов), последние включают их в свой генетический аппарат. Полученная из плазмиды кольцевая ДНК, способная переносить ген от одной клетки к другой, называется вектором.

Векторные ДНК отбирают или специально изменяют так, чтобы они были способны размножаться в клетках-реципиентах. Кроме того, векторы должны содержать гены-маркеры, придающие клеткам-реципиентам новые признаки, по которым их можно отличить от других клеток. Такими генами могут служить гены устойчивости к антибиотикам.

Для выбора генов пользуются библиотекой генов, насчитывающей миллионы единиц.

Для контроля их встраивания и переноса используют зонды – молекулы нуклеиновых кислот, меченные радиоактивным изотопом, обычно фосфором 32Р. Зонды содержат нуклеотидные последовательности, комплементарные участкам ДНК искомого гена.

После того как убеждаются в успешности переноса рекомбинантной ДНК в клетку-реципиент, производят клонирование, то есть из одной материнской клетки получают культуры дочерних клеток (клоны), имеющие одинаковый генетический аппарат.

Клоны клеток используются в промышленных целях для биотехнологического производства белковых веществ, в том числе ферментов. В частности, налажено производство сычужного фермента (ренина), необходимого для выработки сыра.

Клонирование клеток животных и растений – более сложный процесс, однако в настоящее время получают клоны лимфоцитов (иммунных клеток), которые синтезируют моноклональные антитела, используемые в диагностике инфекционных заболеваний.

Рекомбинантные штаммы бактерий и дрожжей широко используют для микробиологического синтеза не только белков, но и таких веществ, как витамины, аминокислоты, антибиотики и другие ценные соединения.

Методами генной инженерии можно усиливать природную способность определенных видов бактерий к осуществлению специфических биологических процессов и созданию высокоэффективных штаммов микроорганизмов, разрушающих токсичные субстраты или способствующих росту культурных растений.

Основные области применения рекомбинантных микроорганизмов – медицина и ветеринария (производство инсулина, интерлейкинов, интерферона, гормона роста, эритропоэтина, ДНК-азы, иммуноглобулинов, рекомбинантных вакцин); сельское хозяйство (микробные инсектициды, микробные удобрения, производство стимуляторов роста растений); экология (биодеградация и утилизация биополимеров); промышленность (синтез ароматических соединений, производство этанола, получение L-аскорбиновой кислоты, антибиотиков, аминокислот, ферментов и др.)

Таким образом, методами генной инженерии потенциально можно преобразовывать клетки бактерий, дрожжей и млекопитающих в «фабрики» для масштабного производства любого белка. Это дает возможность детально анализировать структуру и функции белков и использовать их для полезных целей – в качестве лекарственных средств, кормового и пищевого назначения.

В настоящее время кишечная палочка (Е. coli) стала основным поставщиком таких важных гормонов, как инсулин и соматотропин. Ранее инсулин получали из клеток поджелудочной железы животных, поэтому стоимость его была очень высока.

Для получения 100 г кристаллического инсулина требуется 800-1000 кг поджелудочной железы, а одна железа коровы весит 200-250 грамм. Это делало инсулин дорогим и труднодоступным для широкого круга диабетиков. Инсулин состоит из двух полипептидных цепей А и В длиной 20 и 30 аминокислот.

При соединении их дисульфидными связями образуется нативный двухцепочечный инсулин. Рекомбинантный инсулин не содержит белков Е. coli, эндотоксинов и других примесей, не дает побочных эффектов, как инсулин животных, а по биологической активности от него не отличается. Впоследствии в клетках Е.

Читайте также:  Видео техники торакоцентеза. Посмотреть видео техники торакоцентеза.

coli был осуществлен синтез проинсулина, для чего на матрице РНК с помощью обратной транскриптазы синтезировали ее ДНК-копию. После очистки полученного проинсулина его расщепили и получили нативный инсулин, при этом этапы экстракции и выделения гормона были сведены к минимуму.

Из 1000 литров культуральной жидкости можно получать до 200 граммов гормона, что эквивалентно количеству инсулина, выделяемого из 1600 кг поджелудочной железы свиньи или коровы.

Соматотропин – гормон роста человека, секретируемый гипофизом. Недостаток этого гормона приводит к гипофизарной карликовости. Если вводить соматотропин в дозах 10 мг на кг веса три раза в неделю, то за год ребенок, страдающий от его недостатка, может подрасти на 6 см.

Ранее его получали из трупного материала, из одного трупа – 4-6 мг соматотропина в пересчете на конечный фармацевтический препарат. Таким образом, доступные количества гормона были ограничены, кроме того, гормон, получаемый этим способом, был неоднороден и мог содержать медленно развивающиеся вирусы.

В 1982 году гормон роста человека был получен в культуре Е. coli и животных клеток в институте Пастера во Франции, а с 1984 года начато промышленное производство инсулина и в СССР. При производстве интерферона используют как Е. coli, S. cerevisae (дрожжи), так и культуру фибробластов или трансформированных лейкоцитов.

Аналогичными методами получают также безопасные и дешевые вакцины.

На технологии рекомбинантных ДНК основано получение высокоспецифичных ДНК-зондов, с помощью которых изучают экспрессию генов в тканях, локализацию генов в хромосомах, выявляют гены, обладающие родственными функциями (например, у человека и курицы). ДНК-зонды также используются в диагностике различных заболеваний.

Технология рекомбинантных ДНК сделала возможным нетрадиционный подход «белок-ген», получивший название обратная генетика.

При таком подходе из клетки выделяют белок, клонируют ген этого белка, модифицируют его, создавая мутантный ген, кодирующий измененную форму белка. Полученный ген вводят в клетку.

Если он экспрессируется, несущая его клетка и ее потомки будут синтезировать измененный белок. Таким образом можно исправлять дефектные гены и лечить наследственные заболевания.

Если гибридную ДНК ввести в оплодотворенную яйцеклетку, могут быть получены трансгенные организмы, экспрессирующие мутантный ген и передающие его потомками.

Генетическая трансформация животных позволяет установить роль отдельных генов и их белковых продуктов как в регуляции активности других генов, так и при различных патологических процессах.

С помощью генетической инженерии созданы линии животных, устойчивых к вирусным заболеваниям, а также породы животных с полезными для человека признаками.

Например, микроинъекция рекомбинантной ДНК, содержавшей ген соматотропина быка в зиготу кролика, позволила получить трансгенное животное с гиперпродукцией этого гормона. Полученные животные обладали ярко выраженной акромегалией. Сейчас даже трудно предсказать все возможности, которые будут реализованы в ближайшие несколько десятков лет.

Методы генетической инженерии разнообразны и позволяют сегодня провести генетическую паспортизацию, диагностировать генетические заболевания, создавать ДНК-вакцины, проводить генотерапию различных заболеваний, создавать новые виды микроорганизмов, растений и животных.

Технология рекомбинантных ДНК основана на следующих методах:

  • специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;
  • быстрое секвенирование всех нуклеотидов на очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;
  • конструирование рекомбинантной ДНК;
  • гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью, основанную на их способности связывать комплементарные последовательности нуклеиновых кислот;
  • клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;
  • введение рекомбинантной ДНК в клетки или организмы.

Генетическая инженерия — это… Что такое Генетическая инженерия?

Нокаутные мыши

Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.

Экономическое значение

Генная инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма.

В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования.

Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путём использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток или новых пород экспериментальных мышей для научных исследований.

Жители Кении проверяют, как растёт новый трансгенный сорт кукурузы, устойчивый к насекомым-вредителям

Основой микробиологической, биосинтетической промышленности является бактериальная клетка.

Необходимые для промышленного производства клетки подбираются по определённым признакам, самый главный из которых — способность производить, синтезировать, при этом в максимально возможных количествах, определённое соединение — аминокислоту или антибиотик, стероидный гормон или органическую кислоту.

Иногда надо иметь микроорганизм, способный, например, использовать в качестве «пищи» нефть или сточные воды и перерабатывать их в биомассу или даже вполне пригодный для кормовых добавок белок. Иногда нужны организмы, способные развиваться при повышенных температурах или в присутствии веществ, безусловно смертельных для других видов микроорганизмов.

Задача получения таких промышленных штаммов очень важна, для их видоизменения и отбора разработаны многочисленные приёмы активного воздействия на клетку — от обработки сильнодействующими ядами, до радиоактивного облучения.

Цель этих приёмов одна — добиться изменения наследственного, генетического аппарата клетки. Их результат — получение многочисленных микробов-мутантов, из сотен и тысяч которых учёные потом стараются отобрать наиболее подходящие для той или иной цели.

Создание приёмов химического или радиационного мутагенеза было выдающимся достижением биологии и широко применяется в современной биотехнологии.

Но их возможности ограничиваются природой самих микроорганизмов. Они не способны синтезировать ряд ценных веществ, которые накапливаются в растениях, прежде всего в лекарственных и эфирномасличных.

Не могут синтезировать вещества, очень важные для жизнедеятельности животных и человека, ряд ферментов, пептидные гормоны, иммунные белки, интерфероны да и многие более просто устроенные соединения, которые синтезируются в организмах животных и человека.

Разумеется, возможности микроорганизмов далеко не исчерпаны. Из всего изобилия микроорганизмов использована наукой, и особенно промышленностью, лишь ничтожная доля.

Для целей селекции микроорганизмов большой интерес представляют, например, бактерии анаэробы, способные жить в отсутствие кислорода, фототрофы, использующие энергию света подобно растениям, хемоавтотрофы, термофильные бактерии, способные жить при температуре, как обнаружилось недавно, около 110 °C, и др.

И всё же ограниченность «природного материала» очевидна. Обойти ограничения пытались и пытаются с помощью культур клеток и тканей растений и животных. Это очень важный и перспективный путь, который также реализуется в биотехнологии.

За последние несколько десятилетий учёные создали методы, благодаря которым отдельные клетки тканей растения или животного можно заставить расти и размножаться отдельно от организма, как клетки бактерий.

Это было важное достижение — полученные культуры клеток используют для экспериментов и для промышленного получения некоторых веществ, которые с помощью бактериальных культур получить невозможно.

История развития и достигнутый уровень технологии

Во второй половине XX века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У.

Гилбертом (Нобелевская премия по химии 1980 г.). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов.

А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках — это мутации. Они происходят под действием, например, мутагенов — химических ядов или излучений. Но такие изменения нельзя контролировать или направлять.

Поэтому учёные сосредоточили усилия на попытках разработать методы введения в клетку новых, совершенно определённых генов, нужных человеку.

Основные этапы решения генноинженерной задачи следующие:

Читайте также:  Иридовирусы. Герпесвирусы. Семейство герпесвирусов.

1. Получение изолированного гена.
2. Введение гена в вектор для переноса в организм.
3. Перенос вектора с геном в модифицируемый организм.
4. Преобразование клеток организма.
5. Отбор генетически модифицированных организмов (ГМО) и устранение тех, которые не были успешно модифицированы.

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100—120 азотистых оснований (олигонуклеотиды).

Получила распространение техника, позволяющая использовать для синтеза ДНК, в том числе мутантной, полимеразную цепную реакцию. Термостабильный фермент, ДНК-полимераза, используется в ней для матричного синтеза ДНК, в качестве затравки которого применяют искусственно синтезированные кусочки нуклеиновой кислоты — олигонуклеотиды.

Фермент обратная транскриптаза позволяет с использованием таких затравок (праймеров) синтезировать ДНК на матрице выделенной из клеток РНК. Синтезированная таким способом ДНК называется комплементарной (РНК) или кДНК. Изолированный, «химически чистый» ген может быть также получен из фаговой библиотеки.

Так называется препарат бактериофага, в геном которого встроены случайные фрагменты из генома или кДНК, воспроизводимые фагом вместе со всей своей ДНК.

Чтобы встроить ген в вектор, используют ферменты — рестриктазы и лигазы, также являющиеся полезным инструментом генной инженерии. С помощью рестриктаз ген и вектор можно разрезать на кусочки.

С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор.

За открытие рестриктаз Вернер Арбер, Даниел Натанс и Хамилтон Смит также были удостоены Нобелевской премии (1978 г.).

Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки.

Значительные трудности были связаны с введением готового гена в наследственный аппарат клеток растений и животных.

Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать «свой» белок.

Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку. Такой процесс получил название трансфекция.

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации.

Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных.

В результате рождаются детеныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение в научных исследованиях

Нокаут гена. Для изучения функции того или иного гена может быть применен нокаут гена (англ. gene knockout). Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации.

Для нокаута синтезируют такой же ген или его фрагмент, изменённый так, чтобы продукт гена потерял свою функцию. Основные методы реализации: цинковый палец, морфолино и TALEN [1].

Для получения нокаутных мышей полученную генно-инженерную конструкцию вводят в эмбриональные стволовые клетки, где конструкция подвергается соматической рекомбинации и замещает нормальный ген, а измененные клетки имплантируют в бластоцисту суррогатной матери.

У плодовой мушки дрозофилы мутации инициируют в большой популяции, в которой затем ищут потомство с нужной мутацией. Сходным способом получают нокаут у растений и микроорганизмов.

Искусственная экспрессия. Логичным дополнением нокаута является искусственная экспрессия, то есть добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.

Схема строения зелёного флуоресцентного белка

Визуализация продуктов генов. Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортёрным элементом, например, с геном зелёного флуоресцентного белка (GFP).

Этот белок, флуоресцирующий в голубом свете, используется для визуализации продукта генной модификации. Хотя такая техника удобна и полезна, ее побочными следствиями может быть частичная или полная потеря функции исследуемого белка.

Более изощрённым, хотя и не столь удобным методом является добавление к изучаемому белку не столь больших олигопептидов, которые могут быть обнаружены с помощью специфических антител.

Исследование механизма экспрессии. В таких экспериментах задачей является изучение условий экспрессии гена. Особенности экспрессии зависят прежде всего от небольшого участка ДНК, расположенного перед кодирующей областью, который называется промотор и служит для связывания факторов транскрипции.

Этот участок вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP или фермента, катализирующего легко обнаруживаемую реакцию.

Кроме того, что функционирование промотора в тех или иных тканях в тот или иной момент становится хорошо заметным, такие эксперименты позволяют исследовать структуру промотора, убирая или добавляя к нему фрагменты ДНК, а также искусственно усиливать его функции.

Генная инженерия человека

В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.

Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генноинженерных пород животных, поскольку в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша.

Для этого предлагается использовать вирусные частицы в качестве вектора. Вирусные частицы способны проникать в значительный процент клеток взрослого человека, встраивая в них свою наследственную информацию; возможно контролируемое размножение вирусных частиц в организме.

При этом для уменьшения побочных эффектов учёные стараются избегать внедрения генноинженерных ДНК в клетки половых органов, тем самым избегая воздействия на будущих потомков пациента.

Также стоит отметить значительную критику этой технологии в СМИ: разработка генноинженерных вирусов воспринимается многими как угроза для всего человечества.

С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах.

Долгое время генетическая инженерия обезьян сталкивалась с серьёзными трудностями, однако в 2009 году эксперименты увенчались успехом: в журнале Nature появилась публикация об успешном применении генноинженерных вирусных векторов для исцеления взрослого самца обезьяны от дальтонизма.

[1] В этом же году дал потомство первый генетически модифицированный примат (выращенный из модифицированной яйцеклетки) — игрунка обыкновенная.[2]

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия.[3] Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем[4][5][6][7][8][9][10].

Примечания

  1. Элементы — новости науки: Обезьян вылечили от дальтонизма при помощи генной терапии
  2. MEMBRANA | Мировые новости | Трансгенные обезьяны дали первое потомство
  3. Genetically altered babies born. Би-би-си (???). Архивировано из первоисточника 22 августа 2011. Проверено 26 апреля 2008.
  4. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, 2008. «Molecular biology of the cell», 5th ed., Garland Science, USA, pp. 1302—1303
  5. Kimmelman J. (2009) «Ethics of cancer gene transfer clinical research», Methods in Molecular Biology 542, 423—445
  6. Wagner AM, Schoeberlein A, Surbek D. (2009) «Fetal gene therapy: opportunities and risks», Advanced Drug Delivery Reviews 61, 813—821
  7. Gatzidou E, Gatzidou G, Theocharis SE. (2009) «Genetically transformed world records: a reality or in the sphere of fantasy?», Medical Science Monitor 15, RA41-47
  8. Lowenstein PR. (2008) «Clinical trials in gene therapy: ethics of informed consent and the future of experimental medicine», Current Opinion in Molecular Therapy 10, 428—430
  9. Jin X, Yang YD, Li YM. (2008) «Gene therapy: regulations, ethics and its practicalities in liver disease», World Journal of Gastroenterology 14, 2303—2307
  10. Harridge SD, Velloso CP. (2008) «Gene doping», Essays in Biochemistry 44, 125—138
  • Сингер М., Берг П. Гены и геномы. — Москва, 1998.
  • Стент Г., Кэлиндар Р. Молекулярная генетика. — Москва, 1981.
  • Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning. — 1989.
  • Патрушев Л. И. Искусственные генетические системы. — М.: Наука, 2004. — ISBN 5-02-032893-6
  • Щелкунов С. Н.
Читайте также:  Репозиция отломков челюстей. Закрепление отломков челюстей.

Что такое генная инженерия

Обновлено 20 июля 2021 Просмотров: 97 354 Дмитрий Петров

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. Развитие науки, начиная с 20 века, идет вперед семимильными шагами.

Подчас мы не успеваем вникнуть, что же еще новенького открыли и изобрели ученые, принимаем новое как данность. Но «человеку разумному» не пристало быть невежественным.

Поэтому приоткроем завесу тайны над одной из актуальнейших тем последних пятидесяти лет. Поговорим сегодня о том, что такое генная инженерия, для чего она нужна, и чем отличается от генетической селекции.

Генная инженерия – что это такое

Все живые организмы на Земле – это сложные биологические системы, развитие которых происходит по запрограммированному алгоритму. Данный алгоритм записан в молекулах ДНК (дезоксирибонуклеиновой кислоты). В этой макромолекуле зашифрованы сведения о наследственной генетической информации.

ДНК состоит из генов. Каждый из них отвечает за какой-либо наследственный признак или участвует в формировании ряда признаков.

Внешняя среда может лишь в незначительной степени влиять на изменение запрограммированного природой алгоритма.

Развитие науки во второй половине 20 века сделало возможным изучить строение ДНК и научиться корректировать гены. Так возникло новое направление в науке, получившее название генной (генетической) инженерии.

Примечание: правильно ставить ударение на третий слог (инженЕрии). Слово «инженерия» произошло от латинского «ingenium», что значит «изобретательность». Подразумевается изобретение и применение определенных способов воздействия на какие-либо материальные объекты.

Следовательно, генетическая инженерия – это комплекс методов, приемов и технологий, применяемых для проведения манипуляций с генами.

Генная инженерия (ГИ) относится к технологиям высокого уровня, в ней используются новейшие достижения микробиологии, вирусологии, биологии.

Методы генной инженерии (т.е. способы, с помощью которых ученые добиваются поставленных целей):

  1. полиплоидия – количественное увеличение хромосомных наборов;
  2. слияние протопластов – объединение клеток или их частей;
  3. трансгенез – добавление генов от других видов (например, введение в ДНК папайи вируса пятнистости для придания фрукту устойчивости к поражению этим заболеванием);
  4. корректирование генома в зависимости от желаемых характеристик.

ГИ дает возможность «конструировать» новые клетки ДНК и РНК (рибонуклеиновой кислоты), используя ДНК и РНК других биологических объектов.

Для справки: ДНК хранит наследственную информацию, а РНК – переносит ее. Процессы манипуляции с генами осуществляются вне живого организма, а затем вводятся в него уже измененными.

Этапы манипуляций с генами:

  1. выделение из цепочки ДНК того или иного гена;
  2. введение инородного гена в модифицируемую молекулу ДНК;
  3. внедрение модифицированного ДНК в живой организм;
  4. отбор удачных генно-модифицированных организмов (ГМО) и утилизация неудачных.

Наиболее наглядный пример результатов генной инженерии – это клонирование (получение генетической копии) в 1996 году овечки, названной Долли (умерла в 2003 году).

Другие примеры менее наглядны, но более практичны: это генно-модифицированная (ГМ) кукуруза, соя и другие сельскохозяйственные культуры. Так, в США на долю ГМ сои приходится до 85 % от всего объема выращенной культуры. ГМ растения начали использовать в сельском хозяйстве начиная с 1996 года.

Научились модифицировать на генном уровне и рыб. В ДНК генно-модифицированного лосося ввели дополнительный гормон роста. Благодаря этому рыба растет в 2 раза быстрее своих собратьев.

Какие проблемы решает генная инженерия

Цель генной инженерии – изменение свойств и характеристик живых организмов посредством воздействия на их геном (совокупность генов).

В частности, ГИ занимается решением следующих проблем:

  1. придание устойчивости к определенным ядохимикатам (например, у сельхозкультур – к гербицидам);
  2. получение устойчивости к болезням и вредителям;
  3. увеличение продуктивности ГМО;
  4. создание особых качеств и характеристик у модифицируемого объекта.

Изначально с помощью ГИ ученые добивались выведения сельскохозяйственных культур, устойчивых к болезням и дающим рекордные урожаи. Цель – устранение угрозы голода на Земле.

В наши дни цели уже куда масштабней – ученые пытаются посредством ГИ создать способы борьбы с такими серьезными заболеваниями, как ВИЧ или онкология, производить человеческий инсулин с использованием генетически модифицированных бактерий.

Достижения генной инженерии:

  1. создание банка генов клонов бактерий с частицами ДНК различных биологических организмов, в том числе – человека;
  2. промышленное производство инсулина, интерферона, гормональных фармацевтических препаратов на основе ГМ штаммов вирусов, бактерий и дрожжей;
  3. создание высших биологических организмов (растений, рыб, млекопитающих).

Чем отличаются генетическая селекция и генная инженерия

Основное, чем отличается генетическая селекция и генная инженерия – это подход к решению одной и той же проблемы.

В первом случае – это отбор и скрещивание биологических объектов с нужными характеристиками. Во втором – это создание ГМО с желаемыми характеристиками посредством вмешательства в структуру ДНК, т.е. модифицирование генотипа встраиванием в него определенного гена (генов).

Селекция – это тип искусственного отбора, осуществляемом человеком для получения определенных качеств биологического объекта.

Например, выведение новых пород животных одного вида (собаки, кошки, куры, коровы и т.д.). Селекция используется для усиления желаемых качеств без насильственного вмешательства в ДНК. Проводится путем скрещивания особей разного пола, т.е. биологическим методом полового размножения.

С помощью ГИ можно получить биологический объект от родителей разной видовой принадлежности, встроив в ДНК одной особи чужеродный ген объекта другого вида.

Изменения в геноме при ГИ осуществляются целенаправленно, а при селекции коррекция генома происходит случайным образом.

Узнавайте новое вместе с нами!

Автор статьи: Елена Копейкина

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Эта статья относится к рубрикам:

Генная инженерия. Основные этапы. Использование генной инженерии в медицине и селекции

Генная инженерия (генетическая
инженерия), совокупность методов
молекулярной генетики, направленных
на искусственное создание новых, не
встречающихся в природе сочетаний
генов. Те или иные чужеродные для данного
организма гены вводят в его клетки и
встраивают в его геном с различными
целями:

  • для изучения строения и функций генетического аппарата,
  • для эффективной наработки продукта данного гена (для гормона или антибиотика),
  • для придания организму-хозяину каких-либо желаемых свойств (для сельскохозяйственных растений и животных – большей продуктивности или большей устойчивости к инфекциям или паразитам),
  • для замещения (компенсации) генов, дефекты которых вызывают наследственные заболевания, и др.

Генно-инженерная технология использует
всё разнообразие сложных и тонких
методов современной генетики, позволяющих
работать с ничтожными количествами
генетического материала. Основные
этапы и операции генной инженерии
включают
:

  • выделение из клеток ДНК, содержащей нужный ген;
  • разрезание ДНК на мелкие фрагменты с помощью специальных ферментов;
  • соединение фрагментов ДНК с т. н. векторами, обеспечивающими проникновение в клетку; клонирование (размножение) нужного гена;
  • создание рекомбинантной (гибридной) ДНК из участков ДНК (генов) разного происхождения; введение (микроинъекция) генетического материала в культивируемые клетки организма-хозяина или в его яйцеклетку.

После того как в нач. 70-х гг. 20 в. был
разработан метод получения рекомбинантных
ДНК
, чужеродные гены стали вводить в
клетки бактерий, растений и животных
(Рекомбинантная ДНК — это искусственно
полученная молекула ДНК). Такие организмы
получили название трансгенных.
Очень быстро генная инженерия нашла
практическое применение как основа
биотехнологии.

Уже в 80-е гг. 20 в. с помощью
бактериальных клеток, в которые вводили
гены человека, ответственные за синтез
гормонов инсулина и соматотропина и
антивирусного белка интерферона, было
налажено производство этих важных для
медицины препаратов. В мощную индустрию
превратилось получение и разведение
используемых в сельском хозяйстве
трансгенных растений и трансгенных
животных.

Практические результаты генной
инженерии.
Генная инженерия служит
для получения желаемых качеств изменяемого
или генетически модифицированного
организма.

В отличие от традиционной
селекции, в ходе которой генотип
подвергается изменениям лишь косвенно,
генная инженерия позволяет непосредственно
вмешиваться в генетический аппарат,
применяя технику молекулярного
клонирования.

Примерами применения
генной инженерии являются получение
новых генетически модифицированных
сортов зерновых культур, производство
человеческого инсулина путём использования
генномодифицированных бактерий,
производство эритропоэтина в культуре
клеток или новых пород экспериментальных
мышей для научных исследований.

  1. Особенности организации генетического аппарата и передача наследственности у бактерий, вирусов и у прокариот. Бактерий , вирусы как объект генетики. Трансформация, трансдукция и конъюгация у бактерий и их значение. Эписомы и плазмиды.

?

Ссылка на основную публикацию
Adblock
detector